@article{GrueneLondiGillettetal.2023, author = {Gr{\"u}ne, Jeannine and Londi, Giacomo and Gillett, Alexander J. and St{\"a}hly, Basil and Lulei, Sebastian and Kotova, Maria and Olivier, Yoann and Dyakonov, Vladimir and Sperlich, Andreas}, title = {Triplet Excitons and Associated Efficiency-Limiting Pathways in Organic Solar Cell Blends Based on (Non-) Halogenated PBDB-T and Y-Series}, series = {Advanced Functional Materials}, volume = {33}, journal = {Advanced Functional Materials}, number = {12}, doi = {10.1002/adfm.202212640}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312164}, year = {2023}, abstract = {The great progress in organic photovoltaics (OPV) over the past few years has been largely achieved by the development of non-fullerene acceptors (NFAs), with power conversion efficiencies now approaching 20\%. To further improve device performance, loss mechanisms must be identified and minimized. Triplet states are known to adversely affect device performance, since they can form energetically trapped excitons on low-lying states that are responsible for non-radiative losses or even device degradation. Halogenation of OPV materials has long been employed to tailor energy levels and to enhance open circuit voltage. Yet, the influence on recombination to triplet excitons has been largely unexplored. Using the complementary spin-sensitive methods of photoluminescence detected magnetic resonance and transient electron paramagnetic resonance corroborated by transient absorption and quantum-chemical calculations, exciton pathways in OPV blends are unravelled employing the polymer donors PBDB-T, PM6, and PM7 together with NFAs Y6 and Y7. All blends reveal triplet excitons on the NFA populated via non-geminate hole back transfer and, in blends with halogenated donors, also by spin-orbit coupling driven intersystem crossing. Identifying these triplet formation pathways in all tested solar cell absorber films highlights the untapped potential for improved charge generation to further increase plateauing OPV efficiencies.}, language = {en} } @phdthesis{Kern2013, author = {Kern, Julia}, title = {Field Dependence of Charge Carrier Generation in Organic Bulk Heterojunction Solar Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-91963}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In the field of organic photovoltaics, one of the most intensely researched topics to date is the charge carrier photogeneration in organic bulk heterojunction solar cells whose thorough understanding is crucial for achieving higher power conversion efficiencies. In particular, the mechanism of singlet exciton dissociation at the polymer-fullerene interface is still controversially debated. This work addresses the dissociation pathway via relaxed charge transfer states (CTS) by investigating its field dependence for reference material systems consisting of MDMO-PPV and one of the fullerene derivatives PC61BM, bisPCBM and PC71BM. Field dependent photoluminescence (PL(F)) and transient absorption (TA(F)) measurements give insight into the recombination of charge transfer excitons (CTE) and the generation of polarons, respectively. Optically detected magnetic resonance and atomic force microscopy are used to characterize the morphology of the samples. The comparison of the experimental field dependent exciton recombination recorded by PL(F) and the theoretical exciton dissociation probability given by the Onsager-Braun model yields the exciton binding energy as one of the key parameters determining the dissociation efficiency. The binding energies of both the singlet exciton in neat MDMO-PPV and the CTE in MDMO-PPV:PC61BM 1:1 are extracted, the latter turning out to be significantly reduced with respect to the one of the singlet exciton. Based on these results, the field dependence of CTE dissociation is evaluated for MDMO-PPV:PC61BM blends with varying fullerene loads by PL(F) and TA(F). For higher PC61BM contents, the CTE binding energies decrease notably. This behavior is ascribed to a larger effective dielectric constant for well-intermixed blends and to an interplay between dielectric constant and CTE delocalization length for phase separated morphologies, emphasizing the importance of high dielectric constants for the charge carrier photogeneration process. Finally, the CTE binding energies are determined for MDMO-PPV blends with different fullerene derivatives, focusing on the influence of the acceptor LUMO energy. Here, the experimental results suggest the latter having no or at least no significant impact on the binding energy of the CTE. Variations of this binding energy are rather related to different trap levels in the acceptors which seem to be involved in CTS formation.}, subject = {Organische Solarzelle}, language = {en} }