@article{RibitschPehamAdeetal.2018, author = {Ribitsch, Iris and Peham, Christian and Ade, Nicole and Duerr, Julia and Handschuh, Stephan and Schramel, Johannes Peter and Vogl, Claus and Walles, Heike and Egerbacher, Monika and Jenner, Florian}, title = {Structure-Function relationships of equine menisci}, series = {PLoS ONE}, volume = {13}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0194052}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225214}, pages = {e0194052, 1-17}, year = {2018}, abstract = {Meniscal pathologies are among the most common injuries of the femorotibial joint in both human and equine patients. Pathological forces and ensuing injuries of the cranial horn of the equine medial meniscus are considered analogous to those observed in the human posterior medial horn. Biomechanical properties of human menisci are site-and depth-specific. However, the influence of equine meniscus topography and composition on its biomechanical properties is yet unknown. A better understanding of equine meniscus composition and biomechanics could advance not only veterinary therapies for meniscus degeneration or injuries, but also further substantiate the horse as suitable translational animal model for (human) meniscus tissue engineering. Therefore, the aim of this study was to investigate the composition and structure of the equine knee meniscus in a site-and age-specific manner and their relationship with potential site-specific biomechanical properties. The meniscus architecture was investigated histologically. Biomechanical testing included evaluation of the shore hardness (SH), stiffness and energy loss of the menisci. The SH was found to be subjected to both age and site-specific changes, with an overall higher SH of the tibial meniscus surface and increase in SH with age. Stiffness and energy loss showed neither site nor age related significant differences. The macroscopic and histologic similarities between equine and human menisci described in this study, support continued research in this field.}, language = {en} } @article{WeisSchoenVictoretal.2011, author = {Weis, Eva and Schoen, Holger and Victor, Anja and Spix, Claudia and Ludwig, Marco and Schneider-Raetzke, Brigitte and Kohlschmidt, Nicolai and Bartsch, Oliver and Gerhold-Ay, Aslihan and Boehm, Nils and Grus, Franz and Haaf, Thomas and Galetzka, Danuta}, title = {Reduced mRNA and Protein Expression of the Genomic Caretaker RAD9A in Primary Fibroblasts of Individuals with Childhood and Independent Second Cancer}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0025750}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141838}, pages = {e25750}, year = {2011}, abstract = {Background: The etiology of secondary cancer in childhood cancer survivors is largely unclear. Exposure of normal somatic cells to radiation and/or chemotherapy can damage DNA and if not all DNA lesions are properly fixed, the mis-repair may lead to pathological consequences. It is plausible to assume that genetic differences, i.e. in the pathways responsible for cell cycle control and DNA repair, play a critical role in the development of secondary cancer. Methodology/Findings: To identify factors that may influence the susceptibility for second cancer formation, we recruited 20 individuals who survived a childhood malignancy and then developed a second cancer as well as 20 carefully matched control individuals with childhood malignancy but without a second cancer. By antibody microarrays, we screened primary fibroblasts of matched patients for differences in the amount of representative DNA repair-associated proteins. We found constitutively decreased levels of RAD9A and several other DNA repair proteins in two-cancer patients, compared to one-cancer patients. The RAD9A protein level increased in response to DNA damage, however to a lesser extent in the two-cancer patients. Quantification of mRNA expression by real-time RT PCR revealed lower RAD9A mRNA levels in both untreated and 1 Gy gamma-irradiated cells of two-cancer patients. Conclusions/Significance: Collectively, our results support the idea that modulation of RAD9A and other cell cycle arrest and DNA repair proteins contribute to the risk of developing a second malignancy in childhood cancer patients.}, language = {en} }