@article{HossfeldHeegaardKellerer2023, author = {Hossfeld, Tobias and Heegaard, Poul E. and Kellerer, Wolfgang}, title = {Comparing the scalability of communication networks and systems}, series = {IEEE Access}, volume = {11}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2023.3314201}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349403}, pages = {101474-101497}, year = {2023}, abstract = {Scalability is often mentioned in literature, but a stringent definition is missing. In particular, there is no general scalability assessment which clearly indicates whether a system scales or not or whether a system scales better than another. The key contribution of this article is the definition of a scalability index (SI) which quantifies if a system scales in comparison to another system, a hypothetical system, e.g., linear system, or the theoretically optimal system. The suggested SI generalizes different metrics from literature, which are specialized cases of our SI. The primary target of our scalability framework is, however, benchmarking of two systems, which does not require any reference system. The SI is demonstrated and evaluated for different use cases, that are (1) the performance of an IoT load balancer depending on the system load, (2) the availability of a communication system depending on the size and structure of the network, (3) scalability comparison of different location selection mechanisms in fog computing with respect to delays and energy consumption; (4) comparison of time-sensitive networking (TSN) mechanisms in terms of efficiency and utilization. Finally, we discuss how to use and how not to use the SI and give recommendations and guidelines in practice. To the best of our knowledge, this is the first work which provides a general SI for the comparison and benchmarking of systems, which is the primary target of our scalability analysis.}, language = {en} } @article{KraftBirkReichertetal.2020, author = {Kraft, Robin and Birk, Ferdinand and Reichert, Manfred and Deshpande, Aniruddha and Schlee, Winfried and Langguth, Berthold and Baumeister, Harald and Probst, Thomas and Spiliopoulou, Myra and Pryss, R{\"u}diger}, title = {Efficient processing of geospatial mHealth data using a scalable crowdsensing platform}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {12}, issn = {1424-8220}, doi = {10.3390/s20123456}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207826}, year = {2020}, abstract = {Smart sensors and smartphones are becoming increasingly prevalent. Both can be used to gather environmental data (e.g., noise). Importantly, these devices can be connected to each other as well as to the Internet to collect large amounts of sensor data, which leads to many new opportunities. In particular, mobile crowdsensing techniques can be used to capture phenomena of common interest. Especially valuable insights can be gained if the collected data are additionally related to the time and place of the measurements. However, many technical solutions still use monolithic backends that are not capable of processing crowdsensing data in a flexible, efficient, and scalable manner. In this work, an architectural design was conceived with the goal to manage geospatial data in challenging crowdsensing healthcare scenarios. It will be shown how the proposed approach can be used to provide users with an interactive map of environmental noise, allowing tinnitus patients and other health-conscious people to avoid locations with harmful sound levels. Technically, the shown approach combines cloud-native applications with Big Data and stream processing concepts. In general, the presented architectural design shall serve as a foundation to implement practical and scalable crowdsensing platforms for various healthcare scenarios beyond the addressed use case.}, language = {en} }