@phdthesis{Lange2021, author = {Lange, Manuel}, title = {Mutanten im RES-Oxylipin Signalweg von \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-16608}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166085}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Reaktive elektrophile Spezies-Oxylipine (RES-Oxylipine) finden sich in Pflanzen- und Tierzellen und zeichnen sich durch eine f{\"u}r sie typische Anordnung von Atomen aus: einer α,β unges{\"a}ttigten Carbonyl Gruppe. In Pflanzenzellen geh{\"o}ren unter anderem 2-(E)-Hexenal und die Vorstufe der Jasmons{\"a}ure 12-Oxophytodiens{\"a}ure (OPDA) zu den RES-Oxylipinen, in Tierzellen z.B. Prostaglandin A1 (PGA). RES-Oxylipine {\"u}ben Signalfunktionen aus, wie dies in Pflanzenzellen funktioniert ist jedoch noch nicht bekannt. Ziel dieser Arbeit ist dabei einen m{\"o}glichen RES-Oxylipin Signalweg aufzukl{\"a}ren und die beteiligten Gene zu identifizieren. Es konnte aber gezeigt werden, dass die Expressionsrate von bestimmten Genen wie z.B. GST6 durch RES-Oxylipine spezifisch induziert wird. Zur Untersuchung des RES-Oxylipin Signalweges wurde der GST6 Promotor vor das Luciferase-Gen fusioniert, um so ein RES-Oxylipin spezifisches Reportersystem zu erhalten. Die Ethylmethansulfonat mutagenisierten Linien wurden auf ge{\"a}nderte Luciferase-Aktivit{\"a}t hin untersucht. Dabei wurden drei Mutanten isoliert, die in dieser Arbeit n{\"a}her untersucht wurden. Eine zeigte basal erh{\"o}hte Luciferase-Aktivit{\"a}t (constitutive overexpresser 3 = coe3) und die anderen beiden erniedrigte Luciferase-Aktivit{\"a}t nach PGA Gabe (non responsive 1 und 2 = nr1 und nr2). In dieser Arbeit konnte gezeigt werden, dass die Ph{\"a}notypen in allen 3 Mutanten rezessiv vererbt werden und die Mutanten nicht zueinander allel sind. Zudem war die ver{\"a}nderte Luciferase-Aktivit{\"a}t nicht durch ge{\"a}nderte Phytohormonspiegel oder durch Mutationen im GST6 Promotor erkl{\"a}rbar. Auf die Gabe von RES, wie Benzylisothiocyanat oder Sulforaphan, sowie auf endogene RES-Oxylipine, wie OPDA und Hexenal, reagierten die Mutanten auf {\"a}hnliche Weise, wie nach PGA Gabe. Weiterf{\"u}hrende Untersuchungen zeigten, dass sich die drei Mutanten stark voneinander unterschieden. Das Transkriptom kontrollbehandelter coe3 Pflanzen unterschied sich stark von dem der GST6::LUC Pflanzen. Die Mutante war trockenstressresistenter zudem war sie sensibler gegen{\"u}ber NaCl, was jedoch nicht von einer ver{\"a}nderten Reaktion auf Abscisins{\"a}ure herr{\"u}hrte. Des Weiteren war der Chlorophyllabbau bei dunkel inkubierten Bl{\"a}ttern geringer. Bei der Lokalisierung der Mutation, die noch nicht abgeschlossen ist, konnten Chromosom 2 und 5 als die wahrscheinlichsten Kandidaten ermittelt werden. Weitere Analysen sind n{\"o}tig um den Bereich weiter eingrenzen zu k{\"o}nnen. Die Mutante nr1, die sich durch verminderte Reaktion auf RES-Oxylipine auszeichnete, zeigte einen kleineren Wuchs und ein deutlich verz{\"o}gertes Bl{\"u}hen. Außerdem wies die Mutante erh{\"o}hte Argininspiegel in ihren Bl{\"a}ttern auf. Das Transkriptom unterschied sich sowohl bei kontrollbehandelten, als auch bei PGA behandelten nr1 Pflanzen massiv von denen der gleichbehandelten Kontrollen. Auch die nr1 schien trockenstressresistenter zu sein, sie war im Gegensatz zur coe3 aber robuster gegen{\"u}ber h{\"o}heren Konzentrationen an NaCl. Mit Hilfe eines „Next Generation Genome-Mappings" war es m{\"o}glich die Mutation am Ende von Chromosom 3 zu lokalisieren und auf f{\"u}nf m{\"o}gliche Gene einzugrenzen. Weitere Untersuchungen m{\"u}ssen nun kl{\"a}ren, welches dieser Gene urs{\"a}chlich f{\"u}r den Ph{\"a}notyp der ge{\"a}nderten Luciferase-Aktivit{\"a}t ist. Die zweite Mutante mit einer reduzierten Reaktion auf RES-Oxylipine war die nr2. {\"U}berraschender Weise unterschied sich das Transkriptom kontrollbehandelter nr2 Pflanzen deutlich st{\"a}rker von dem der gleichbehandelten GST6::LUC Pflanzen, als das nach PGA Gabe der Fall war. Sie reagierte nur mit sehr schwacher Luciferase-Aktivit{\"a}t auf Verwundung und war zudem deutlich sensibler gegen{\"u}ber Trockenheit. F{\"u}r eine zuk{\"u}nftige Lokalisation der urs{\"a}chlichen Mutation wurden entsprechende Kreuzungen durchgef{\"u}hrt aus deren Samen jederzeit mit einer Selektionierung begonnen werden kann. Mit dieser Arbeit konnte ein erster großer Schritt in Richtung Identifikation der, f{\"u}r die ge{\"a}nderte Luciferase-Aktivit{\"a}t, verantwortlichen Mutation gemacht werden, sowie erste Reaktionen der Mutanten auf abiotische Stressfaktoren untersucht werden. Somit ist man der Entdeckung von Signaltransduktionsfaktoren, die RES-Oxylipinabh{\"a}ngig reguliert werden, einen wichtigen Schritt n{\"a}her gekommen.}, subject = {Arabidopsis thaliana}, language = {de} } @article{NuhkatBroscheStoezleFeixetal.2021, author = {Nuhkat, Maris and Brosch{\´e}, Mikael and Stoezle-Feix, Sonja and Dietrich, Petra and Hedrich, Rainer and Roelfsema, M. Rob G. and Kollist, Hannes}, title = {Rapid depolarization and cytosolic calcium increase go hand-in-hand in mesophyll cells' ozone response}, series = {New Phytologist}, volume = {232}, journal = {New Phytologist}, number = {4}, doi = {10.1111/nph.17711}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259646}, pages = {1692-1702}, year = {2021}, abstract = {Plant stress signalling involves bursts of reactive oxygen species (ROS), which can be mimicked by the application of acute pulses of ozone. Such ozone-pulses inhibit photosynthesis and trigger stomatal closure in a few minutes, but the signalling that underlies these responses remains largely unknown. We measured changes in Arabidopsis thaliana gas exchange after treatment with acute pulses of ozone and set up a system for simultaneous measurement of membrane potential and cytosolic calcium with the fluorescent reporter R-GECO1. We show that within 1 min, prior to stomatal closure, O\(_{3}\) triggered a drop in whole-plant CO\(_{2}\) uptake. Within this early phase, O\(_{3}\) pulses (200-1000 ppb) elicited simultaneous membrane depolarization and cytosolic calcium increase, whereas these pulses had no long-term effect on either stomatal conductance or photosynthesis. In contrast, pulses of 5000 ppb O\(_{3}\) induced cell death, systemic Ca\(^{2+}\) signals and an irreversible drop in stomatal conductance and photosynthetic capacity. We conclude that mesophyll cells respond to ozone in a few seconds by distinct pattern of plasma membrane depolarizations accompanied by an increase in the cytosolic calcium ion (Ca\(^{2+}\)) level. These responses became systemic only at very high ozone concentrations. Thus, plants have rapid mechanism to sense and discriminate the strength of ozone signals.}, language = {en} } @article{DindasDreyerHuangetal.2021, author = {Dindas, Julian and Dreyer, Ingo and Huang, Shouguang and Hedrich, Rainer and Roelfsema, M. Rob G.}, title = {A voltage-dependent Ca\(^{2+}\) homeostat operates in the plant vacuolar membrane}, series = {New Phytologist}, volume = {230}, journal = {New Phytologist}, number = {4}, doi = {10.1111/nph.17272}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259627}, pages = {1449-1460}, year = {2021}, abstract = {Cytosolic calcium signals are evoked by a large variety of biotic and abiotic stimuli and play an important role in cellular and long distance signalling in plants. While the function of the plasma membrane in cytosolic Ca\(^{2+}\) signalling has been intensively studied, the role of the vacuolar membrane remains elusive. A newly developed vacuolar voltage clamp technique was used in combination with live-cell imaging, to study the role of the vacuolar membrane in Ca\(^{2+}\) and pH homeostasis of bulging root hair cells of Arabidopsis. Depolarisation of the vacuolar membrane caused a rapid increase in the Ca\(^{2+}\) concentration and alkalised the cytosol, while hyperpolarisation led to the opposite responses. The relationship between the vacuolar membrane potential, the cytosolic pH and Ca2+ concentration suggests that a vacuolar H\(^{+}\)/Ca\(^{2+}\) exchange mechanism plays a central role in cytosolic Ca2+ homeostasis. Mathematical modelling further suggests that the voltage-dependent vacuolar Ca\(^{2+}\) homeostat could contribute to calcium signalling when coupled to a recently discovered K\(^{+}\) channel-dependent module for electrical excitability of the vacuolar membrane.}, language = {en} } @article{Froeschel2021, author = {Fr{\"o}schel, Christian}, title = {In-depth evaluation of root infection systems using the vascular fungus Verticillium longisporum as soil-borne model pathogen}, series = {Plant Methods}, volume = {17}, journal = {Plant Methods}, doi = {10.1186/s13007-021-00758-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260807}, year = {2021}, abstract = {Background While leaves are far more accessible for analysing plant defences, roots are hidden in the soil, leading to difficulties in studying soil-borne interactions. Inoculation strategies for infecting model plants with model root pathogens are described in the literature, but it remains demanding to obtain a methodological overview. To address this challenge, this study uses the model root pathogen Verticillium longisporum on Arabidopsis thaliana host plants and provides recommendations for selecting appropriate infection systems to investigate how plants cope with root pathogens. Results A novel root infection system is introduced, while two existing ones are precisely described and optimized. Step-by-step protocols are presented and accompanied by pathogenicity tests, transcriptional analyses of indole-glucosinolate marker genes and independent confirmations using reporter constructs. Advantages and disadvantages of each infection system are assessed. Overall, the results validate the importance of indole-glucosinolates as secondary metabolites that limit the Verticillium propagation in its host plant. Conclusion Detailed assistances on studying host defence strategies and responses against V. longisporum is provided. Furthermore, other soil-borne microorganisms (e.g., V. dahliae) or model plants, such as economically important oilseed rape and tomato, can be introduced in the infection systems described. Hence, these proven manuals can support finding a root infection system for your specific research questions to further decipher root-microbe interactions.}, language = {en} } @article{HuangDingRoelfsemaetal.2021, author = {Huang, Shouguang and Ding, Meiqi and Roelfsema, M. Rob G. and Dreyer, Ingo and Scherzer, S{\"o}nke and Al-Rasheid, Khaled A. S and Gao, Shiqiang and Nagel, Georg and Hedrich, Rainer and Konrad, Kai R.}, title = {Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel GtACR1}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {28}, doi = {10.1126/sciadv.abg4619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260925}, year = {2021}, abstract = {Guard cells control the aperture of plant stomata, which are crucial for global fluxes of CO\(_2\) and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (GtACR1). In tobacco guard cells that express GtACR1, blue- and green-light pulses elicit Cl\(^-\) and NO\(_3\)\(^-\) currents of -1 to -2 nA. The anion currents depolarize the plasma membrane by 60 to 80 mV, which causes opening of voltage-gated K+ channels and the extrusion of K+. As a result, continuous stimulation with green light leads to loss of guard cell turgor and closure of stomata at conditions that provoke stomatal opening in wild type. GtACR1 optogenetics thus provides unequivocal evidence that opening of anion channels is sufficient to close stomata.}, language = {en} }