@phdthesis{Matthaei2023, author = {Matthaei, Christian Tobias}, title = {Studying the Photodissociation of Chlorine-Containing Molecules with Velocity Map Imaging}, doi = {10.25972/OPUS-32740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327405}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The first is via direct dissociation and the second likely involves a barrier slowing down dissociation. Chlorine-containing hydrocarbons pose a great risk for the environment and especially for the atmosphere. In this thesis I present the photodissociation dynamics of multiple chlorine-containing molecules. The method of velocity map imaging was utilized for gaining information on the kinetic energy distribution of the fragments generated in the photodissociation reactions. First, the photodissociation of benzoyl chloride after excitation to the S1, S2 and the S3 state between 279 nm and 237 nm was studied. This stable molecule was an ideal candidate for demonstrating a new ionization scheme for chlorine atoms. It was shown that benzoyl chloride dissociates statistically from the ground state. Afterwards, the results from experiments on the radicals trichloromethyl and dichlorocarbene are presented in the range of 230 to 250 nm. These radicals remain after the dissociation of carbon tetrachloride and have not been studied in detail because of their instability. Trichlormethyl dissociates via two paths: The loss of a chlorine atom to dichlorocarbene and by decaying to CCl and a chlorine molecule. The dissociation to dichlorocarbene involves a barrier. If the photon exciting the molecule has enough energy to surpass the barrier, which is the case starting at around 235 nm, trichlormethyl dissociates rapidly resulting in an anisotropic VMI. However, if the the excitation energy is lower, the dissociation takes longer than a rotational period and the anisotropy is lost.The path to CCl is a statistical dissociation. Dichlorocarbene dissociates to CCl and Cl via to separate channels. The first is via direct dissociation and the second likely involves a barrier slowing down dissociation.}, subject = {Photodissoziation}, language = {en} }