@article{BrunkhorstKanaanTrautmannSchreiberetal.2021, author = {Brunkhorst-Kanaan, Nathalie and Trautmann, Sandra and Schreiber, Yannick and Thomas, Dominique and Kittel-Schneider, Sarah and Gurke, Robert and Geisslinger, Gerd and Reif, Andreas and Tegeder, Irmgard}, title = {Sphingolipid and endocannabinoid profiles in adult attention deficit hyperactivity disorder}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {9}, issn = {2227-9059}, doi = {10.3390/biomedicines9091173}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246080}, year = {2021}, abstract = {Genes encoding endocannabinoid and sphingolipid metabolism pathways were suggested to contribute to the genetic risk towards attention deficit hyperactivity disorder (ADHD). The present pilot study assessed plasma concentrations of candidate endocannabinoids, sphingolipids and ceramides in individuals with adult ADHD in comparison with healthy controls and patients with affective disorders. Targeted lipid analyses of 23 different lipid species were performed in 71 mental disorder patients and 98 healthy controls (HC). The patients were diagnosed with adult ADHD (n = 12), affective disorder (major depression, MD n = 16 or bipolar disorder, BD n = 6) or adult ADHD with comorbid affective disorders (n = 37). Canonical discriminant analysis and CHAID analyses were used to identify major components that predicted the diagnostic group. ADHD patients had increased plasma concentrations of sphingosine-1-phosphate (S1P d18:1) and sphinganine-1-phosphate (S1P d18:0). In addition, the endocannabinoids, anandamide (AEA) and arachidonoylglycerol were increased. MD/BD patients had increased long chain ceramides, most prominently Cer22:0, but low endocannabinoids in contrast to ADHD patients. Patients with ADHD and comorbid affective disorders displayed increased S1P d18:1 and increased Cer22:0, but the individual lipid levels were lower than in the non-comorbid disorders. Sphingolipid profiles differ between patients suffering from ADHD and affective disorders, with overlapping patterns in comorbid patients. The S1P d18:1 to Cer22:0 ratio may constitute a diagnostic or prognostic tool.}, language = {en} } @article{KlitschEvdokimovFranketal.2020, author = {Klitsch, Alexander and Evdokimov, Dimitar and Frank, Johanna and Thomas, Dominique and Saffer, Nadine and Meyer zu Altenschildesche, Caren and Sisignano, Marco and Kampik, Daniel and Malik, Rayaz A. and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Reduced association between dendritic cells and corneal sub-basal nerve fibers in patients with fibromyalgia syndrome}, series = {Journal of the Peripheral Nervous System}, volume = {25}, journal = {Journal of the Peripheral Nervous System}, number = {1}, doi = {10.1111/jns.12360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214150}, pages = {9-18}, year = {2020}, abstract = {In our study, we aimed at investigating corneal langerhans cells (LC) in patients with fibromyalgia syndrome (FMS) and small fiber neuropathy (SFN) as potential contributors to corneal small fiber pathology. We enrolled women with FMS (n = 134) and SFN (n = 41) who underwent neurological examination, neurophysiology, prostaglandin analysis in tear fluid, and corneal confocal microscopy (CCM). Data were compared with those of 60 age-matched female controls. After screening for dry eye disease, corneal LC were counted and sub-classified as dendritic (dLC) and non-dendritic (ndLC) cells with or without nerve fiber association. We further analyzed corneal nerve fiber density (CNFD), length (CNFL), and branch density (CNBD). Neurological examination indicated deficits of small fiber function in patients with SFN. Nerve conduction studies were normal in all participants. Dry eye disease was more prevalent in FMS (17\%) and SFN (28\%) patients than in controls (5\%). Tear fluid prostaglandin levels did not differ between FMS patients and controls. While corneal LC density in FMS and SFN patients was not different from controls, there were fewer dLC in association with nerve fibers in FMS and SFN patients than in controls (P < .01 each). Compared to controls, CNFL was lower in FMS and SFN patients (P < .05 each), CNFD was lower only in FMS patients (P < .05), and CNBD was lower only in SFN patients (P < .001). There was no difference in any CCM parameter between patients with and without dry eyes. Our data indicate changes in corneal innervation and LC distribution in FMS and SFN, potentially based on altered LC signaling.}, language = {en} }