@phdthesis{Hein2014, author = {Hein, David}, title = {Enantioselektive Synthese von chiralen Bispidinen, 9-Oxabispidinen und Bispidinersatzstoffen und ihre Anwendung in der asymmetrischen Synthese}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93709}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Diverse synthetische Zug{\"a}nge zu einer neuen Verbindungsklasse, n{\"a}mlich den chiralen 9- Oxabispidinen wurden realisiert. Als gemeinsame Ausgangsverbindung diente das Aminodiol. Die Route {\"u}ber ein Bispidinlactam stellte sich aufgrund der geringen Ausbeute (~5\%) {\"u}ber 8 Stufen als wenig effektiv heraus. Ein Nitril eignete sich wesentlich besser als Zwischenstufe und lieferte die Zielverbindungen in 9-27\% Gesamtausbeute {\"u}ber 8-12 Stufen. Auch ein Syntheseweg zur Darstellung von Bispidinen konnte ausgehend vom Naturstoff (-)-Cytisin, der aus den Samen des Gemeinen Goldregens isoliert wurde, etabliert werden. Hierzu wurde in Analogie zu O'Briens Arbeiten zun{\"a}chst die freie Aminofunktion als Carbamat gesch{\"u}tzt und der aromatische Ring zum Lactam reduziert, um dann in 5-Position derivatisieren zu k{\"o}nnen. Verschiedene Substituenten (Me, iPr, F, cPr) konnten sowohl in axialer als auch in {\"a}quatorialer Position eingef{\"u}hrt werden. Ein weiterer Reduktionschritt am Ende der Sequenz lieferte die trizyklischen Diamine in 15-38\% Ausbeute {\"u}ber nur 4-6 Stufen ausgehend von (-)-Cytisin. Eine Cyclopropylgruppe wurde durch Einf{\"u}hrung einer Methoxymethylgruppe, Eliminierung und eine Cyclopropanierung mit Diiodmethan/ Diethylzink generiert. Alle synthetisierten Verbindungen wurden als chirale Liganden in verschiedenen enantioselektiven Reaktionen evaluiert. Im Fokus standen hierbei zun{\"a}chst die 9-Oxabispidine, die sich-im Gegensatz zu den bekannten Bispidinen-leider nicht als chirale Liganden in enantioselektiven Deprotonierungen einsetzen lassen, da sie selbst deprotoniert werden. In enantioselektiven Henry-Reaktionen stellte sich das trizyklische 9-Oxabispidin als hervorragender Ligand heraus, der als Kupferkomplex mit einer Vielzahl an Aldehyden (aliphatisch, aromatisch) und Nitromethan umgesetzt wurde. Sowohl die Ausbeuten (44-95\%) als auch die Enantiomeren{\"u}bersch{\"u}sse (91-98\%) waren exzellent und k{\"o}nnen mit den Ergebnissen der besten Literatur-bekannten Katalysatoren mithalten. Auch in einer diastereoselektiven Umsetzung mit Nitroethan konnte ein dr von 80:20 mit sehr guten 94\% ee f{\"u}r das Hauptdiastereomer erzielt werden. Die bizyklischen 9-Oxabispidine eignen sich weniger f{\"u}r Henry-Reaktionen, da die Verbindungen mit sterisch weniger anspruchsvollen Reste nur mittelm{\"a}ßige Resultate (33-46\% ee) ergeben. Mit zunehmender Sterik ist auch eine steigende Tendenz zu einem h{\"o}heren Enantiomeren{\"u}berschuss [z.B. R = Ph, 56/57\% ee] zu erkennen. Interessant ist die Stereoselektivit{\"a}t der bizyklischen Oxabispidine: W{\"a}hrend das trizyklische Bispidin zu einer S-Konfiguration im Produkt f{\"u}hrt-wie es von einem (+)-Spartein-Ersatzstoff zu erwarten ist-liefern R = Et, iPr. cHex und Ph das R-Produkt - genau wie (-)-Spartein. Der Grund hierf{\"u}r ist wahrscheinlich die exponierte Stellung der {\"a}ußeren Methylgruppe im annelierten Piperidinring. Ein {\"a}hnlicher Effekt trat mit dem 9-Oxabispidin R = tBuPh, das ebenfalls einen weit ausladenden aromatischen Ring besitzt, ein. Auch hier wurden unter Induktionsumkehr im Vergleich zu R = Et, iPr, cHex, Ph das S-konfigurierte Produkt in 38-39 \% ee erhalten. Im Gegensatz zu den 9-Oxabispidinen k{\"o}nnen die Bispidine in enantioselektiven Deprotonierungsreaktionen eingesetzt werden. Die bei der Umsetzung erzielten Ergebnisse mit den Monomethyl-Verbindungen (92\% ee, {\"a}quatoriale Me-Gruppe und 79\% ee, axiale Me-Gruppe) zeigen, dass eine axiale Methylgruppe den Chiralit{\"a}tstransfer eher negativ beeinflusst, wohingegen eine {\"a}quatoriale Methylgruppe keinen Einfluss aus{\"u}bt auf den ee (gleicher ee mit 92\% wie das trizyklische Bispidin). Bei gr{\"o}ßeren {\"a}quatorialen Substituenten wie iPr (51\%) sinkt ebenfalls der Enantiomeren{\"u}berschuss. Zwei gleichartige Substituenten (≠ H) in 5-Position st{\"o}ren die Reaktion so sehr, dass der ee-Wert stark abf{\"a}llt (34\% ee bei zwei 5-Methylgruppen). Bei Einf{\"u}hrung von kleinen Substituenten in {\"a}quatorialer und axialer Position, wie F (65\% ee) oder -CH2-CH2- (40\% ee) liegen die erzielten ee-Werte auch viel niedriger.}, subject = {Enantioselektivit{\"a}t}, language = {de} } @phdthesis{Steiner2010, author = {Steiner, Melanie}, title = {Chirale 9-Oxabispidine - Design, enantioselektive Darstellung und Anwendung in der asymmetrischen Synthese}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51909}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Der bekannteste Vertreter der Bispidine ist das Lupinenalkaloid (-)-Spartein, das vor allem in enantioselektiven Deprotonierungen aber auch {\"U}bergangsmetall-katalysierten asymmetrischen Reaktionen als Ligand der Wahl eingesetzt wird. Daneben gibt es nur wenige weitere synthetische Vertreter, da keine flexiblen Darstellungsmethoden zu enantiomerenreinen Bispidinen mit variablen Substituenten in 2-endo-Position existieren. Ein zielgerichtetes Design solcher Verbindungen war daher bisher nur eingeschr{\"a}nkt m{\"o}glich. So sollte in dieser Arbeit eine neue Substanzklasse als chirale Liganden in der asymmetrischen Synthese etabliert werden: 2-endo-substituierte 9-Oxabispidine. Das Br{\"u}cken-Sauerstoffatom sollte die Synthese stark vereinfachen. Insgesamt wurden drei strategisch unterschiedliche Methoden zur enantioselektiven Synthese von 2-endo-substituierten 9-Oxabispidinen entwickelt. Zun{\"a}chst ist die sehr kurze Route zu 2-endo-Phenyl-substituierten Derivaten mit diversen Resten R' an den Stickstoff-Funktionen zu nennen. Ausgehend von k{\"a}uflichem (R,R)-Phenylglycidol wurde (S,S)-3-Benzylamino-3-phenyl-1,2-propandiol dargestellt, das in einer Dreistufen-Eintopf-Reaktion mit (S)-Epichlorhydrin kondensiert und zum all-cis-konfigurierten 2,6-Dimesyloxymethyl-3-phenylmorpholin mesyliert wurde. Die finale Cylisierung erfolgte mit prim{\"a}ren Aminen zu verschiedenen 2-endo-Phenyl-9-oxabispidinen in insgesamt drei bis f{\"u}nf Stufen. Die Darstellung des tricyclischen 9-Oxa-Derivats eines bekannten (+)-Spartein-Ersatzstoffs gelang nach einem verwandten Syntheseprotokoll. F{\"u}r eine effiziente Variation des 2-endo-Substituenten auf einer sp{\"a}ten Synthesestufe wurde zun{\"a}chst enantiomerenreines 3N-Boc-7N-Methyl-9-oxabispidin-2-on als Schl{\"u}sselintermediat ausgew{\"a}hlt, das aus (R)-Epichlorhydrin und racemischem Glycids{\"a}uremethylester dargestellt wurde. Die weitere {\"U}berf{\"u}hrung in die 9-Oxabispidine wurde durch Grignard-Addition, Abspaltung der N-Boc-Gruppe vom resultierenden, ringoffenen N-Boc-Aminoketon, Cyclisierung zum Imin und abschließende, exo-selektive Reduktion oder Hydrierung erreicht. So wurden bi- und tricyclische 9-Oxabispidine in nur drei Stufen und 51\% Ausbeute synthetisiert. Ein gr{\"o}ßeres Potenzial besitzt jedoch der prim{\"a}r von David Hein parallel zu den eigenen Arbeiten entwickelte Zugang {\"u}ber ein cis-konfiguriertes 6-(N-Boc-Aminomethyl)morpholin-2-carbonitril als zentrale Zwischenstufe, das auch im 10-g-Maßstab problemlos erh{\"a}ltlich war. Die allgemeine Anwendbarkeit und Flexibilit{\"a}t dieser Methode wurde anhand der Darstellung einer Reihe an 9-Oxabispidinen demonstriert. Die dargestellten chiralen 9-Oxabispidine wurden erstmalig in den folgenden f{\"u}nf unterschiedlichen Gebieten der asymmetrischen Synthese getestet: Organolithium- und Organomagnesium-vermittelte Umsetzungen sowie Pd(II)-, Cu(II) und Zink(II)-katalysierte Reaktionen. F{\"u}r enantioselektive Deprotonierungen schwach C-H-acider Verbindungen mit sBuLi erwiesen sich die 9-Oxabispidine als ungeeignet, da sie selbst in Br{\"u}ckenkopfposition lithiiert wurden. Die Stabilit{\"a}t der resultierenden -Lithioether war unerwartet hoch; sie ließen sich beispielsweise bei -78 °C in guten Ausbeuten mit Elektrophilen abfangen. Umlagerungen traten erst beim Aufw{\"a}rmen ein, wenn kein Elektrophil als Reaktionspartner zur Verf{\"u}gung stand. Als definierte Produkte wurden dabei Ring-kontrahierte N,O-Acetale erhalten. Zusammen mit den weniger basischen Grignard-Reagenzien wurden die 9-Oxabispidine erfolgreich zur Desymmetrisierung von meso-Anhydriden verwendet. Bei Pd(II)-katalysierten oxidativen kinetischen Racematspaltungen sekund{\"a}rer Alkohole konnten mit einem 9-Oxabispidin-Pd(II)-Katalysator Selektivit{\"a}tsfaktoren s vergleichbar zu denen mit (-)-Spartein erzielt werden. Die Ursache f{\"u}r die geringere Reaktivit{\"a}t der 9-Oxabispidin-Komplexe liegt gem{\"a}ß quantenchemischen Berechnungen in der Elektronegativit{\"a}t des Br{\"u}cken-Sauerstoffatoms, was die Elektronendichte am Palladiumatom verringert. In Kooperation mit David Hein wurde ein von einem tricyclischen 9-Oxabispidin abgeleiteter Cu-Katalysator entwickelt, der bei der Addition von Nitromethan an zahreiche aromatische, heteroaromatische und aliphatische Aldehyde exzellente Enantioselektivit{\"a}ten im Bereich von 91-97\% lieferte. Mit bicyclischen, 2-endo-substituierten 9-Oxabispidinen als chiralen Liganden wurden hingegen lediglich 33-57\% ee erreicht  bemerkenswerterweise entstanden hierbei bevorzugt die enantiokomplement{\"a}ren β-Nitroalkohole. In Zusammenarbeit mit Janna B{\"o}rner aus der Arbeitsgruppe von S. Herres-Pawlis wurde der erste chirale, neutrale Diamin-Zink(II)-Katalysator f{\"u}r die Ring{\"o}ffnungs-Polymerisation von D,L-Lactid entwickelt. Die Reaktion ben{\"o}tigte kein weiteres anionisches Additiv und konnte ohne L{\"o}sungsmittel mit nicht-aufgereinigtem, k{\"a}uflichem Lactid durchgef{\"u}hrt werden.}, subject = {Bispidinderivate}, language = {de} }