@phdthesis{Karch2022, author = {Karch, Katharina}, title = {Mapping and Neutralization of Antibodies against Neurofascin, Contactin 1, Contactin associated protein 1 and Cortactin}, doi = {10.25972/OPUS-28022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280223}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Immune-mediated polyneuropathies like chronic inflammatory demyelinating polyradiculoneuropathy or Guillain-Barr{\´e} syndrome are rare diseases of the peripheral nervous system. A subgroup of patients harbors autoantibodies against nodal or paranodal antigens, associated with a distinct phenotype and treatment response. In a part of patients with pathologic paranodal or nodal immunoreactivity the autoantigens remain difficult or impossible to determine owing to limitations of the used detection approach - usually ELISAs (enzyme-linked-immunosorbent-assays) - and incomplete knowledge of the possible autoantigens. Due to their high-throughput, low sample consumption and high sensitivity as well as the possibility to display many putative nodal and paranodal autoantigens simultaneously, peptide microarray-based approaches are prime candidates for the discovery of novel autoantigens, point-of-care diagnostics and, in addition, monitoring of pathologic autoimmune response. Current applications of peptide microarrays are however limited by high false-positive rates and the associated need for detailed follow-up studies and validation. Here, robust peptide microarray-based detection of antibodies and the efficient validation of binding signals by on-chip neutralization is demonstrated. First, autoantigens were displayed as overlapping peptide libraries in microarray format. Copies of the biochips were used for the fine mapping of antibody epitopes. Next, binding signals were validated by antibody neutralization in solution. Since neutralizing peptides are obtained in the process of microarray fabrications, neither throughput nor costs are significantly altered. Similar in-situ validation approaches could contribute to future autoantibody characterization and detection methods as well as to therapeutic research. Areas of application could be expanded to any autoimmune-mediated neurological disease as a long-term vision.}, subject = {Microarray}, language = {en} } @phdthesis{Kroiss2008, author = {Kroiß, Matthias}, title = {Reinigung und funktionelle Charakterisierung des SMN-Komplexes von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28840}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Die Zusammenlageurng spleißosomaler UsnRNPs erfolgt beim Menschen und anderen Vertebraten durch den makromolekularen SMN-Komplex. Dieser besteht aus insgesamt neun Proteinen, genannt SMN und Gemin2-8. In dieser Arbeit wurde die Evolution dieser molekularen Maschine untersucht. Dazu wurden die Genome mehrerer Modellorganismen bioinformatisch nach Orthologen von SMN und seinen Komplexpartnern durchsucht. Es zeigte sich, dass SMN und Gemin2 die Kernkomponenten des Komplexes darstellen. Von diesen ausgehend kamen weitere Komponenten im Laufe der Evolution hinzu und zwar blockweise, wie es ihrer physischen Assoziation im humanen Komplex entspricht. Um diese Befunde einer biochemischen {\"U}berpr{\"u}fung zu unterziehen, wurde ein neues Affinit{\"a}tsepitop, das TagIt-Epitop, entwickelt. Nach stabiler Transfektion von Drosophila Schneider2-Zellen konnte das Fusionsprotein effizient exprimiert und der Drosophila-SMN-Komplex nativ aufgereinigt werden. Die massenspektrometrische Untersuchung des Komplexes zeigte, dass SMN und Gemin2 seine einzigen st{\"o}chiometrischen Komponenten sind. Dies ist in eindrucksvoller {\"U}bereinstimmung mit den bioinformatischen Daten. Der aufgereinigte Komplex lagert in vitro Sm-Proteine mit der entsprechenden UsnRNA zum UsnRNP-core-Komplex zusammen. Diese Ergebnisse ließen sich nach rekombinanter Rekonstitution des SMN/Gemin2-Dimers rekapitulieren. Dabei zeigte sich, dass der SMN-Komplex die unkoordinierte Bindung der Sm-Proteine an „falsche" RNAs verhindert. Folglich gen{\"u}gen SMN und Gemin2 zur Zusammenlagerung des Sm-core-Komplexes, w{\"a}hrend die {\"u}brigen Gemine weitere Funktionen im Kontext der UsnRNP-Biogenese spielen k{\"o}nnten. Aus evolutionsbiologischer Sichtweise ist der SMN-Komplex aus Drosophila ein eindr{\"u}ckliches Beispiel, wie die Vereinfachung eines biochemischen Prozesses zur Kompaktierung des Genoms beitragen kann.}, subject = {Taufliege}, language = {de} }