@phdthesis{Rumpf2023, author = {Rumpf, Florian}, title = {Optogenetic stimulation of AVP neurons in the anterior hypothalamus promotes wakefulness}, doi = {10.25972/OPUS-31549}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-315492}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The mammalian central clock, located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus, controls circadian rhythms in behaviour such as the sleep-wake cycle. It is made up of approximately 20,000 heterogeneous neurons that can be classified by their expression of neuropeptides. There are three major populations: AVP neurons (arginine vasopressin), VIP neurons (vasoactive intestinal peptide), and GRP neurons (gastrin releasing peptide). How these neuronal clusters form functional units to govern various aspects of rhythmic behavior is poorly understood. At a molecular level, biological clocks are represented by transcriptional-posttranslational feedback loops that induce circadian oscillations in the electrical activity of the SCN and hence correlate with behavioral circadian rhythms. In mammals, the sleep wake cycle can be accurately predicted by measuring electrical muscle and brain activity. To investigate the link between the electrical activity of heterogeneous neurons of the SCN and the sleep wake cycle, we optogenetically manipulated AVP neurons in vivo with SSFO (stabilized step function opsin) and simultaneously recorded an electroencephalogram (EEG) and electromyogram (EMG) in freely moving mice. SSFO-mediated stimulation of AVP positive neurons in the anterior hypothalamus increased the total amount of wakefulness during the hour of stimulation. Interestingly, this effect led to a rebound in sleep in the hour after stimulation. Markov chain sleep-stage transition analysis showed that the depolarization of AVP neurons through SSFO promotes the transition from all states to wakefulness. After the end of stimulation, a compensatory increase in transitions to NREM sleep was observed. Ex vivo, SSFO activation in AVP neurons causes depolarization and modifies the activity of AVP neurons. Therefore, the results of this thesis project suggest an essential role of AVP neurons as mediators between circadian rhythmicity and sleep-wake behaviour.}, subject = {Schlaf}, language = {en} } @phdthesis{Kurz2022, author = {Kurz, Hendrikje}, title = {Regulation of ion conductance and cAMP/cGMP concentration in megakaryocytes by light}, doi = {10.25972/OPUS-21694}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216947}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Platelets play an essential role in haemostasis. Through granule secretion of second wave mediators and aggregation, they secure vascular integrity. Due to incorrect activation, platelet aggregation and subsequent thrombus formation can cause blood vessel occlusion, leading to ischemia. Patients with defects in platelet production have a low platelet count (thrombocytopenia), which can cause an increased bleeding risk. In vitro platelet generation is still in its development phase. So far, no convincing results have been obtained. For this reason, the health care system still depends on blood donors. Platelets are produced by bone marrow megakaryocytes (MKs), which extend long cytoplasmic protrusions, designated proplatelets, into sinusoidal blood vessels. Due to shear forces, platelets are then released into the bloodstream. The molecular mechanisms underlying platelet production are still not fully understood. However, a more detailed insight of this biological process is necessary to improve the in vitro generation of platelets and to optimise treatment regimens of patients. Optogenetics is defined as "light-modulation of cellular activity or of animal behaviour by gene transfer of photo-sensitive proteins". Optogenetics has had a big impact on neuroscience over the last decade. The use of channelrhodopsin 2 (ChR2), a light-sensitive cation channel, made it possible to stimulate neurons precisely and minimally invasive for the first time. Recent developments in the field of optogenetics intend to address a broader scope of cellular and molecular biology. The aim of this thesis is to establish optogenetics in the field of MK research in order to precisely control and manipulate MK differentiation. An existing "optogenetic toolbox" was used, which made it possible to light-modulate the cellular concentration of specific signalling molecules and ion conductance in MKs. Expression of the bacterial photoactivated adenylyl cyclase (bPAC) resulted in a significant increase in cAMP concentration after 5 minutes of illumination. Similarly, intracellular cGMP concentrations in MKs expressing photoactivated guanylyl cyclase (BeCyclop) were elevated. Furthermore, proplatelet formation of MKs expressing the light-sensitive ion channels ChR2 and anion channelrhodopsin (ACR) was altered in a light-dependent manner. These results show that MK physiology can be modified by optogenetic approaches. This might help shed new light on the underlying mechanisms of thrombopoiesis.}, subject = {Optogenetik}, language = {en} } @phdthesis{Duan2021, author = {Duan, Xiaodong}, title = {Development of new channelrhodopsin versions with enhanced plasma membrane targeting and high calcium/sodium conductance}, doi = {10.25972/OPUS-18839}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188397}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The technique to manipulate cells or living animals by illumination after gene transfer of light-sensitive proteins is called optogenetics. Successful optogenetics started with the use of the light-gated cation channel channelrhodopsin-2 (ChR2). After early demonstrations of the power of ChR2, further light-sensitive ion channels and ion pumps were recruited to the optogenetic toolbox. Furthermore, mutations and chimera of ChR2 improved its versatility. However, there is still a need for improved optogenetic tools, e.g. with higher permeability for calcium or better expression in the plasma membrane. In this thesis, my work focuses on the design of highly functional channelrhodopsins with enhanced Na+ and Ca2+ conductance. First, I tested different N-terminal signal peptides to improve the plasma membrane targeting of Channelrhodopsins. We found that a N-terminal peptide, named LR, could improve the plasma membrane targeting of many rhodopsins. Modification with LR contributed to three to ten-fold larger photocurrents (than that of the original version) of multiple channelrhodopsins, like ChR2 from C. reinhardtii (CrChR2), PsChR, Chrimson, CheRiff, CeChR, ACRs, and the light-activated pump rhodopsins KR2, Jaw, HR. Second, by introducing point mutation, I could further improve the light sensitivity and photocurrent of different channelrhodopsins. For instance, ChR2-XXM 2.0, ChR2-XXL 2.0 and PsChR D139H 2.0 exhibited hundred times larger photocurrents than wild type ChR2 and they show high light sensitivity. Also, the Ca2+ permeable channelrhodopsins PsCatCh 2.0f and PsCatCh 2.0e show very large photocurrents and fast kinetics. In addition, I also characterized a novel bi-stable CeChR (from the acidophilic green alga Chlamydomonas eustigma) with a much longer closing time. Third, I analysed the ion selectivity of different ChRs, which provides a basis for rational selection of channelrhodopsins for different experimental purposes. I demonstrate that ChR2, Chronos, Chrimson, CheRiff and CeChR are highly proton conductive, compared with wild type PsChR. Interestingly, Chronos has the lowest potassium conductance among these channelrhodopsins. Furthermore, I found that mutation of an aspartate in TM4 of ChR2 (D156) and PsChR (D139) to histidine obviously increased both the sodium and calcium permeability while proton conductance was reduced. PsChR D139H 2.0 has the largest sodium conductance of any published channelrhodopsin variants. Additionally, I generated PsCatCh 2.0e which exhibits a ten-fold larger calcium current than the previously reported Ca2+ transporting CrChR2 mutant CatCh. In summary, my research work 1.) described strategies for improving plasma membrane trafficking efficiency of opsins; 2.) yielded channelrhodopsins with fast kinetics or high light sensitivity; 3.) provided optogenetic tools with improved calcium and sodium conductance. We could also improve the performance of channelrhodopsins with distinct action spectra, which will facilitate two-color neural excitation, both in-vitro and in-vivo.}, subject = {Optogenetik}, language = {en} } @phdthesis{Reyer2020, author = {Reyer, Antonella}, title = {Charakterisierung des Channelrhodopsin-2 aus Chlamydomonas reinhardtii als nicht-invasives, optogenetisches Werkzeug zur funktionellen Analyse elektrischer Signale in Pflanzen}, doi = {10.25972/OPUS-21867}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218671}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Ebenso wie Tiere verf{\"u}gen Pflanzen {\"u}ber die F{\"a}higkeit elektrische Signale zu generieren. Dabei repr{\"a}sentieren elektrische Signale - Membranpotential{\"a}nderungen an der Plasmamembran - die fr{\"u}hesten Antworten, welche an Pflanzenzellen im Zuge ver{\"a}nderter externer und intrinsischer Bedingungen beobachtet werden k{\"o}nnen. Stimuli wie K{\"a}lte, Hitze, Verwundung, Herbivorie und Pathogene, aber auch physiologische Prozesse, wie Wachstum und Best{\"a}ubung f{\"u}hren zur {\"A}nderung des Potentials der Plasmamembran pflanzlicher Zellen. Die meisten dieser Membranpotential{\"a}nderungen bestehen aus einer schnellen Depolarisation, gefolgt von einer Repolarisation des Membranpotentials, deren Kinetik, in Abh{\"a}ngigkeit des Stimulus hoch variabel sein kann. Das Wissen {\"u}ber die molekularen Grundlagen der Generierung und Weiterleitung elektrischer Signale in Pflanzen ist im Gegensatz zu Tieren nur wenig verstanden. Eine Ausnahme stellen ‚klassisch-erregbare' Pflanzen wie die Venusfliegenfalle oder die Mimose dar. In diesen Pflanzen f{\"u}hrt ein Ber{\"u}hrungsreiz zur Ausl{\"o}sung eines charakteristischen Aktionspotentials, welches in der Folge zu einer, auf differentiellen Turgor{\"a}nderungen basierenden, nastischen Bewegung f{\"u}hrt. In allen anderen Pflanzen ist die Kinetik der Membranpotential{\"a}nderungen sehr variabel, abh{\"a}ngig vom Stimulus und dem physiologischen Zustand der Zellen und - mit Ausnahme der Reaktion auf einen K{\"a}ltestimulus - lediglich nach langen Latenzzeiten wiederholbar. Dieser Umstand verhindert eine systematische Analyse der molekularen Basis elektrischer Signale in den meisten Pflanzen. Ziel dieser Arbeit war es daher, auf der Basis des Channelrhodopsin-2 (ChR2) aus der Gr{\"u}nalge Chlamydomonas reinhardtii, welches bereits seit 2005 in der Neurobiologie genutzt wird, ein nicht-invasives Werkzeug zur funktionellen Analyse elektrischer Signale in Pflanzen zu etablieren. ChR2 ist ein Blaulicht-aktivierter Kationenkanal, der f{\"u}r seine Funktion all trans-Retinal als Cofaktor ben{\"o}tigt. Im Rahmen dieser Arbeit wurden verschiedene Varianten des ChR2, mit einem Schwerpunkt auf ChR2-C128T und vor allem ChR2-D156C, auch bekannt als ChR2-XXL eingesetzt. ChR2 konnte bereits durch M. Baumann im Rahmen ihrer Dissertation funktionell im transienten Expressionssystem Nicotiana benthamiana dargestellt werden. In der vorliegenden Arbeit wurde das System weiter ausgebaut und die besonders aussichtsreichen ChR2-Varianten nicht nur in N. benthamiana, sondern auch in stabilen Arabidopsis thaliana Linien funktionell charakterisiert. Dabei konnte mit dem ChR2-XXL ein geeignetes optogenetisches Werkzeug zur Untersuchung elektrischer Signale in Pflanzen identifiziert werden. ChR2-XXL bietet die M{\"o}glichkeit das Membranpotential durch kurze, 5 s Blaulichtpulse im Mittel um 95 mV zu depolarisieren und im Anschluss die Repolarisationsphase zu untersuchen. Blaulicht-induzierbare, ChR2-XXL-vermittelte Depolarisationen konnten, reproduzierbar und beliebig oft an den gleichen Zellen wiederholt ausgel{\"o}st werden. Dadurch erm{\"o}glicht ChR2-XXL die bisher nur unzureichend bekannten molekularen Komponenten der Repolarisation des Membranpotentials in Pflanzen zu erforschen. In tierischen Zellen generieren spannungsabh{\"a}ngige Natriumkan{\"a}le die Depolarisation, w{\"a}hrend spannungsabh{\"a}ngige Kaliumkan{\"a}le die Depolarisationskinetik bestimmen. Die im Vergleich zu tierischen Zellen ver{\"a}nderten Ionengradienten lassen vermuten, dass die pflanzliche Depolarisation im Wesentlichen durch Ca2+-abh{\"a}ngige Anionenkan{\"a}le vermittelt wird, die durch den Efflux von Cl- das Membranpotential depolarisieren. F{\"u}r die Repolarisation wird zum einen die Beteiligung von ausw{\"a}rtsgleichrichtenden Kaliumkan{\"a}len postuliert. Zum anderen wird auch eine Beteiligung der Plasmamembran (PM) H+-ATPasen vermutet, welche gleichzeitig einen essentiellen Beitrag zur Generierung des Ruhepotentials leisten. In der vorliegenden Arbeit wurde es durch den Einsatz von ChR2-XXL m{\"o}glich, beide potentiellen Komponenten der Repolarisationsphase, Kaliumkan{\"a}le und PM H+-ATPasen, erstmals durch eine nicht-invasive, Anionen-unabh{\"a}ngige Methode der Depolarisation zu untersuchen. Durch den Einsatz von Mutanten und Kaliumkanalinhibitoren konnte ein m{\"o}glicher Beitrag des ausw{\"a}rtsgleichrichtenden Kaliumkanals Arabidopsis thaliana GUARD CELL OUTWARD RECTIFYING K+ CHANNEL (AtGORK) an der Repolarisationsphase in Arabidopsis Mesophyllzellen nahezu ausgeschlossen werden. Der ausw{\"a}rtsgleichrichtende Kaliumkanal GORK {\"o}ffnet erst bei Membranpotentialen positiv vom Gleichgewichtspotential f{\"u}r Kaliumionen (EK (-118 mV)). Da die ChR2-induzierbaren Depolarisationen ebenso wie viele nat{\"u}rliche Stimuli, diesen Wert kaum erreichen oder nur geringf{\"u}gig {\"u}berschreiten, leistet der GORK einen geringf{\"u}gigen Beitrag bei der Repolarisation. Dies ließ vermuten, dass die Repolarisation von EK bis zum Ruhepotential bei ca. -180 mV dagegen m{\"o}glicherweise durch die PM H+-ATPasen bewerkstelligt wird. Die Wirkung des PM H+-ATPase Inhibitors Natriumorthovanadat, sowie des PM H+-ATPase Aktivators Fusicoccin auf die Repolarisationsphase konnten diese Hypothese unterst{\"u}tzen. Die Hemmung der PM H+-ATPasen verlangsamte die Repolarisationskinetik w{\"a}hrend eine Aktivierung der PM H+-ATPasen diese beschleunigte. So wurde es erstmals m{\"o}glich den genauen Einfluss der PM H+-ATPasen auf Wiederherstellung des Membranpotentials w{\"a}hrend der Repolarisation in Mesophyllzellen zu studieren. Dar{\"u}ber hinaus wurde beobachtet, dass in Gegenwart des Kaliumkanalblockers Ba2+ die Repolarisation ebenfalls beschleunigt werden konnte. In {\"U}bereinstimmung mit dem ‚Pump-and-Leak'-Modell (Alberts et al. 2002) deutet dies darauf hin, dass schwach einw{\"a}rtsgleichrichtende Kaliumkan{\"a}le, wie der ARABIDOPSIS K+ TRANSPORTER 2 (AKT2) dem PM H+-ATPasen Protonengradienten entgegenwirken und somit das Ruhepotential aus der Summe der bewegten Ladungen von Pumpen und Kaliumkan{\"a}len bestimmt wird. Das m{\"o}gliche Potenzial optogenetischer, Rhodopsin-basierter Werkzeuge f{\"u}r die molekulare Analyse elektrischer Signale, insbesondere unter Einsatz der breiten Palette lichtgesteuerter Pumpen und Kan{\"a}le, ihrer spektralen Diversit{\"a}t und ihrer Einkreuzung in ausgew{\"a}hlte Arabidopsis Mutanten wird diskutiert.}, subject = {pflanzliche Elektrophysiologie}, language = {de} } @phdthesis{Beck2019, author = {Beck, Sebastian}, title = {Using optogenetics to influence the circadian clock of \(Drosophila\) \(melanogaster\)}, doi = {10.25972/OPUS-18495}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184952}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Almost all life forms on earth have adapted to the most impactful and most predictable recurring change in environmental condition, the cycle of day and night, caused by the axial rotation of the planet. As a result many animals have evolved intricate endogenous clocks, which adapt and synchronize the organisms' physiology, metabolism and behaviour to the daily change in environmental conditions. The scientific field researching these endogenous clocks is called chronobiology and has steadily grown in size, scope and relevance since the works of the earliest pioneers in the 1960s. The number one model organism for the research of circadian clocks is the fruit fly, Drosophila melanogaster, whose clock serves as the entry point to understanding the basic inner workings of such an intricately constructed endogenous timekeeping system. In this thesis it was attempted to combine the research on the circadian clock with the techniques of optogenetics, a fairly new scientific field, launched by the discovery of Channelrhodopsin 2 just over 15 years ago. Channelrhodopsin 2 is a light-gated ion channel found in the green alga Chlamydomonas reinhardtii. In optogenetics, researches use these light-gated ion channels like Channelrhodopsin 2 by heterologously expressing them in cells and tissues of other organisms, which can then be stimulated by the application of light. This is most useful when studying neurons, as these channels provide an almost non-invasive tool to depolarize the neuronal plasma membranes at will. The goal of this thesis was to develop an optogenetic tool, which would be able to influence and phase shift the circadian clock of Drosophila melanogaster upon illumination. A phase shift is the adaptive response of the circadian clock to an outside stimulus that signals a change in the environmental light cycle. An optogenetic tool, able to influence and phase shift the circadian clock predictably and reliably, would open up many new ways and methods of researching the neuronal network of the clock and which neurons communicate to what extent, ultimately synchronizing the network. The first optogenetic tool to be tested in the circadian clock of Drosophila melanogaster was ChR2-XXL, a channelrhodopsin variant with dramatically increased expression levels and photocurrents combined with a prolonged open state. The specific expression of ChR2-XXL and of later constructs was facilitated by deploying the three different clock-specific GAL4-driver lines, clk856-gal4, pdf-gal4 and mai179-gal4. Although ChR2-XXL was shown to be highly effective at depolarizing neurons, these stimulations proved to be unable to significantly phase shift the circadian clock of Drosophila. The second series of experiments was conducted with the conceptually novel optogenetic tools Olf-bPAC and SthK-bPAC, which respectively combine a cyclic nucleotide-gated ion channel (Olf and SthK) with the light-activated adenylyl-cyclase bPAC. These tools proved to be quite useful when expressed in the motor neurons of instar-3 larvae of Drosophila, paralyzing the larvae upon illumination, as well as affecting body length. This way, these new tools could be precisely characterized, spawning a successfully published research paper, centered around their electrophysiological characterization and their applicability in model organisms like Drosophila. In the circadian clock however, these tools caused substantial damage, producing severe arrhythmicity and anomalies in neuronal development. Using a temperature-sensitive GAL80-line to delay the expression until after the flies had eclosed, yielded no positive results either. The last series of experiments saw the use of another new series of optogenetic tools, modelled after the Olf-bPAC, with bPAC swapped out for CyclOp, a membrane-bound guanylyl-cyclase, coupled with less potent versions of the Olf. This final attempt however also ended up being unsuccessful. While these tools could efficiently depolarize neuronal membranes upon illumination, they were ultimately unable to stimulate the circadian clock in way that would cause it to phase shift. Taken together, these mostly negative results indicate that an optogenetic manipulation of the circadian clock of Drosophila melanogaster is an extremely challenging subject. As light already constitutes the most impactful environmental factor on the circadian clock, the combination of chronobiology with optogenetics demands the parameters of the conducted experiments to be tuned with an extremely high degree of precision, if one hopes to receive positive results from these types of experiments at all.}, subject = {Chronobiologie}, language = {en} } @phdthesis{Grotemeyer2019, author = {Grotemeyer, Alexander}, title = {Characterisation and application of new optogenetic tools in \(Drosophila\) \(melanogaster\)}, doi = {10.25972/OPUS-17879}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178793}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Since Channelrhodopsins has been described first and introduced successfully in freely moving animals (Nagel et al., 2003 and 2005), tremendous impact has been made in this interesting field of neuroscience. Subsequently, many different optogenetic tools have been described and used to address long-lasting scientific issues. Furthermore, beside the 'classical' Channelrhodopsin-2 (ChR2), basically a cation-selective ion channel, also altered ChR2 descendants, anion selective channels and light-sensitive metabotropic proteins have expanded the optogenetic toolbox. However, in spite of this variety of different tools most researches still pick Channelrhodopsin-2 for their optogenetic approaches due to its well-known kinetics. In this thesis, an improved Channelrhodopsin, Channelrhodopsin2-XXM (ChR2XXM), is described, which might become an useful tool to provide ambitious neuroscientific approaches by dint of its characteristics. Here, ChR2XXM was chosen to investigate the functional consequences of Drosophila larvae lacking latrophilin in their chordotonal organs. Finally, the functionality of GtACR, was checked at the Drosophila NMJ. For a in-depth characterisation, electrophysiology along with behavioural setups was employed. In detail, ChR2XXM was found to have a better cellular expression pattern, high spatiotemporal precision, substantial increased light sensitivity and improved affinity to its chromophore retinal, as compared to ChR2. Employing ChR2XXM, effects of latrophilin (dCIRL) on signal transmission in the chordotonal organ could be clarified with a minimum of side effects, e.g. possible heat response of the chordotonal organ, due to high light sensitivity. Moreover, optogenetic activation of the chordotonal organ, in vivo, led to behavioural changes. Additionally, GtACR1 was found to be effective to inhibit motoneuronal excitation but is accompanied by unexpected side effects. These results demonstrate that further improvement and research of optogenetic tools is highly valuable and required to enable researchers to choose the best fitting optogenetic tool to address their scientific questions.}, subject = {Optogenetik}, language = {en} } @phdthesis{Gao2017, author = {Gao, Shiqiang}, title = {Characterizing new photoreceptors to expand the Optogenetic toolbox}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112941}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Optogenetics is a method to control the cell activity with light by expression of a natural or engineered photoreceptor via genetic modification technology. Optogenetics early success came with the light-gated cation channel "Channelrhodopsin-2" in neurons and expanded from neuroscience to other research fields such as cardiac research and cell signaling, also due to the enrichment by new photoreceptors. In this study, I focus on searching and characterizing new photoreceptors to expand the optogenetic tool box. In this work I characterize three newly discovered microbial rhodopsins and some engineered mutants of them. The first rhodopsin is a proton pump from the diatom Fragilariopsis cylindrus, Fragilariopsis Rhodopsin or abbreviated: FR. I cloned the full-length FR and proved it to be a light-activated proton pump with high efficacy in comparison to Bacteriorhodopsin (BR). During this study, I also developed a new method to improve the plasma membrane targeting of several microbial rhodopsins. I also obtained a FR mutant (channel-like FR or chFR) which behaves like a light-gated proton channel. FR can be used for optogenetic hyperpolarization or alkalization of a cell while the chFR could be used for depolarization or lowering of the cellular pH. The induction of FR expression under iron-limited conditions in the diatom indicated an alternative energy generation mechanism of F. cylindrus when iron-containing enzymes are scarce. I then characterized a new microbial rhodopsin with novel light-regulated Guanylyl Cyclase (GC) activity. This rhodopsin guanylyl cyclase from the fungus Blastocladiella emersonii (B.e. CyclaseOpsin or BeCyclOp) has been proven by me to be an efficient light-gated GC with high specificity and fast kinetics. BeCyclOp also has a novel structure with eight transmembrane helices, containing a long cytosolic N-terminus which participates in the tight regulation of the GC activity. In collaboration with Prof. Alexander Gottschalk (Univ. Frankfurt/M.), BeCyclOp has been tested in muscle cells and sensory neurons of Caenorhabditis elegans and proven to be a powerful optogenetic tool in a living animal. I also generated a BeCyclOp mutant with enhanced light sensitivity. Already more than ten years ago, guanylyl cyclase rhodopsins were suggested to exist in Chlamydomonas reinhardtii by analyzing genomic sequence data. But until now no functional proof existed. By further cloning and sequencing I discovered such a rhodopsin with light-regulated guanylyl cyclase activity. This functional Cyclaseopsin (COP6c) is quite different to BeCyclOp, as it was proven to be a light-inhibited GC. Cop6c is much larger than BeCyclOp with a His-Kinase and a response regulator domain between the rhodopsin and the cyclase domain. I also introduced a new strategy for generating optogenetic tools by fusing the photoactivated adenylyl cyclase bPAC to two different CNG channels. These new tools function via light-gated cAMP production and subsequent CNG channel activation. These tools combined the properties of bPAC (highly sensitive to blue light) and CNG channels (high single-channel conductance and high Ca2+ permeability), as demonstrated by expression in Xenopus oocytes. As a further benefit the fusing of bPAC to CNG channels leads to a bPAC with a more than tenfold reduced dark activity which is a valuable improvement for bPAC itself as an optogenetic tool.}, subject = {Photorezeptor}, language = {en} } @phdthesis{Nuwal2010, author = {Nuwal, Nidhi}, title = {Optogenetic investigation of nervous system functions using walking behavior and genome wide transcript analysis of Synapsin and Sap47 mutants of Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51694}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {PART I Animals need to constantly evaluate their external environment in order to survive. In some cases the internal state of the animal changes to cope with it's surrounding. In our study we wanted to investigate the role of amines in modulating internal states of Drosophila. We have designed a behavioral paradigm where the flies are fixed in space but can walk on a small styrofoam ball suspended by a gentle stream of air. The walking activity of flies was used as behavioral readout. PART I Animals need to constantly evaluate their external environment in order to survive. In some cases the internal state of the animal changes to cope with it's surrounding. In our study we wanted to investigate the role of amines in modulating internal states of Drosophila. We have designed a behavioral paradigm where the flies are fixed in space but can walk on a small styrofoam ball suspended by a gentle stream of air. The walking activity of flies was used as behavioral readout. An operant training paradigm was established by coupling one of the walking directions to incidence of heat punishment. We observed that animals quickly realized the contingency of punishment with walking direction and avoided walking in the punished direction in the presence of punishment, but did not continue walking in the unpunished direction in the absence of the punishment. This would indicate that the flies do not form a memory for the punished direction or rapidly erase it under new conditions. On having established the paradigm with heat punishment we have attempted to activate selected subsets of neuronal populations of Drosophila while they were walking on the ball. The selective activation of neurons was achieved by expressing the light-activated ion channel channelrhodopsin-2 (ChR2) using the Gal4-UAS system and coupling the unidirectional walking of the animals on the ball with the incidence of blue light required to activate the channels and depolarize the neurons. The feasibility of this approach was tested by light-activating sugar sensitive gustatory receptor neurons expressing ChR2, we found that when the light was actuated the flies preferred to turn in one direction the optically "rewarded" direction. Next we similarly activated different subsets of aminergic neurons. We observed that in our setup animals avoided to turn in the direction which was coupled to activation of dopaminergic neurons indicating that release of dopamine is disliked by the animals. This is in accordance with associative learning experiments where dopamine is believed to underlie the formation of an association between a neutral conditioned stimulus with the aversive unconditioned stimulus. However, when we activated tyraminergic/octopaminergic neurons we did not observe any directional preference. The activation of dopaminergic and tyraminergic/octopaminergic neurons led to arousal of the animals indicating that we were indeed successful in activating those neurons. Also, the activation of serotonergic neurons did not have any effect on directional preference of the animals. With this newly established paradigm it will be interesting to find out if in insects like in mammals a reward mediating system exists and to test subsets of aminergic or peptidergic neurons that could possibly be involved in a reward signaling system which has not been detected in our study. Also, it would be interesting to localize neuropile regions that would be involved in mediating choice behavior in our paradigm. PART II In collaboration with S. Kneitz (IZKF Wuerzburg) and T. Nuwal we performed genome-wide expression analysis of two pre-synaptic mutants - Synapsin (Syn97) and Synapse associated protein of 47 kDa (Sap47156). The rationale behind these experiments was to identify genes that were up- or down-regulated due to these mutations. The microarray experiments provided us with several candidate genes some of which we have verified by qPCR. From our qPCR analysis we can conclude that out of the verified genes only Cirl transcripts seem to be reproducibly down regulated in Synapsin mutants. The Cirl gene codes for a calcium independent receptor for latrotoxin. Further qPCR experiments need to be performed to verify other candidate genes. The molecular interactions between CIRL and SYN or their genes should now be investigated in detail.}, subject = {Taufliege}, language = {en} }