@article{SunAnhaltSarosietal.2022, author = {Sun, Meng-Jia and Anhalt, Olga and S{\´a}rosi, Menyh{\´a}rt B. and Stolte, Matthias and W{\"u}rthner, Frank}, title = {Activating Organic Phosphorescence via Heavy Metal-π Interaction Induced Intersystem Crossing}, series = {Advanced Materials}, volume = {34}, journal = {Advanced Materials}, number = {51}, doi = {10.1002/adma.202207331}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312248}, year = {2022}, abstract = {Heavy-atom-containing clusters, nanocrystals, and other semiconductors can sensitize the triplet states of their surface-bonded chromophores, but the energy loss, such as nonradiative deactivation, often prevents the synergistic light emission in their solid-state coassemblies. Cocrystallization allows new combinations of molecules with complementary properties for achieving functionalities not available in single components. Here, the cocrystal formation that employs platinum(II) acetylacetonate (Pt(acac)\(_{2}\)) as a triplet sensitizer and electron-deficient 1,4,5,8-naphthalene diimides (NDIs) as organic phosphors is reported. The hybrid cocrystals exhibit room-temperature phosphorescence confined in the low-lying, long-lived triplet state of NDIs with photoluminescence (PL) quantum yield (Φ\(_{PL}\)) exceeding 25\% and a phosphorescence lifetime (τ\(_{Ph}\)) of 156 µs. This remarkable PL property benefits from the noncovalent electronic and spin-orbital coupling between the constituents.}, language = {en} } @phdthesis{Suraru2013, author = {Suraru, Sabin-Lucian}, title = {Elektronenarme und kernerweiterte Naphthalindiimide und Diketopyrrolopyrrole f{\"u}r organische D{\"u}nnschichttransistoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87880}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Im Rahmen dieser Arbeit wurde gezeigt, dass die elektronischen Eigenschaften und das Packungsverhalten von Naphthalindiimid (NDI)- und Diketopyrrolopyrrol (DPP)- Derivaten durch Einf{\"u}hren geeigneter Substituenten sowie durch Erweiterung des konjugierten Pi-Systems zur Optimierung der Eigenschaften als organische Halbleitermaterialien eingestellt werden k{\"o}nnen. W{\"a}hrend DPP-Halbleiter zwar in Polymeren, nicht jedoch als niedermolekulare Halbleiter, f{\"u}r die organische Elektronik von Bedeutung sind, stellen vor allem die hier vorgestellten cyanierten DPP-Derivate eine synthetisch leicht zug{\"a}ngliche Klasse an niedermolekularen p-Halbleitern mit exzellenten Lochtransporteigenschaften dar. Die Expansion des NDI- und DPP-Kerns er{\"o}ffnet zudem den synthetischen Zugang zu neuen Verbindungsklassen mit ver{\"a}nderten elektronischen Eigenschaften. Gerade das f{\"u}r die Carbazolocarbazoldiimide postulierte Konzept einer elektronenreichen p-Transportachse konnte durch Wahl geeigneter Imidsubstituenten zur Entwicklung zweidimensionaler p-Halbleiter mit sehr guten Mobilit{\"a}ten f{\"u}hren. Schließlich stellen 2,6-kernhalogenierte NDI-Derivate mit fluorierten Imidgruppen aufgrund der herausragenden Elektronenmobilit{\"a}ten und der sehr hohen Luftstabilit{\"a}t außergew{\"o}hnliche Kandidaten f{\"u}r den Einsatz als n-Halbleiter in organischen D{\"u}nnschichttransistoren dar.}, subject = {D{\"u}nnschichttransistor}, language = {de} } @phdthesis{Roeger2007, author = {R{\"o}ger, Cornelia}, title = {Bioinspired Light-Harvesting Zinc Chlorin Rod Aggregates Powered by Peripheral Chromophores}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26760}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Artificial light-harvesting (LH) systems have been obtained by self-assembly of naphthalene diimide-functionalized zinc chlorin dyads and triad in nonpolar, aprotic solvents. UV-vis, CD, and steady-state emission spectroscopy as well as atomic force microscopy showed that rod-like structures are formed by excitonic interactions of zinc chlorin units, while the appended naphthalene diimide dyes do not aggregate at the periphery of the cylinders. In all cases, photoexcitation of the enveloping naphthalene diimides at 540 and 620 nm, respectively, was followed by highly efficient energy-transfer processes to the inner zinc chlorin backbone, as revealed by time-resolved fluorescence spectroscopy on the picosecond time-scale. As a consequence, the LH efficiencies of zinc chlorin rod aggregates were increased by up to 63\%. The effective utilization of solar energy recommends these biomimetic systems for an application in electronic materials on the nanoscale.}, subject = {Farbstoff}, language = {en} }