@article{GirschickWolfMorbachetal.2015, author = {Girschick, Hermann and Wolf, Christine and Morbach, Henner and Hertzberg, Christoph and Lee-Kirsch, Min Ae}, title = {Severe immune dysregulation with neurological impairment and minor bone changes in a child with spondyloenchondrodysplasia due to two novel mutations in the ACP5 gene}, series = {Pediatric Rheumatology}, volume = {13}, journal = {Pediatric Rheumatology}, number = {37}, doi = {10.1186/s12969-015-0035-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149990}, year = {2015}, abstract = {Spondyloenchondrodysplasia (SPENCD) is a rare skeletal dysplasia, characterized by metaphyseal lesions, neurological impairment and immune dysregulation associated with lupus-like features. SPENCD is caused by biallelic mutations in the ACP5 gene encoding tartrate-resistant phosphatase. We report on a child, who presented with spasticity, multisystem inflammation, autoimmunity and immunodeficiency with minimal metaphyseal changes due to compound heterozygosity for two novel ACP5 mutations. These findings extend the phenotypic spectrum of SPENCD and indicate that ACP5 mutations can cause severe immune dysregulation and neurological impairment even in the absence of metaphyseal dysplasia.}, language = {en} } @article{HedrichHofmannPabliketal.2013, author = {Hedrich, Christian M. and Hofmann, Sigrun R. and Pablik, Jessica and Morbach, Henner and Girschick, Hermann J.}, title = {Autoinflammatory bone disorders with special focus on chronic recurrent multifocal osteomyelitis (CRMO)}, series = {Pediatric Rheumatology}, volume = {11}, journal = {Pediatric Rheumatology}, number = {47}, issn = {1546-0096}, doi = {10.1186/1546-0096-11-47}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125694}, year = {2013}, abstract = {Sterile bone inflammation is the hallmark of autoinflammatory bone disorders, including chronic nonbacterial osteomyelitis (CNO) with its most severe form chronic recurrent multifocal osteomyelitis (CRMO). Autoinflammatory osteopathies are the result of a dysregulated innate immune system, resulting in immune cell infiltration of the bone and subsequent osteoclast differentiation and activation. Interestingly, autoinflammatory bone disorders are associated with inflammation of the skin and/or the intestine. In several monogenic autoinflammatory bone disorders mutations in disease-causing genes have been reported. However, regardless of recent developments, the molecular pathogenesis of CNO/CRMO remains unclear. Here, we discuss the clinical presentation and molecular pathophysiology of human autoinflammatory osteopathies and animal models with special focus on CNO/CRMO. Treatment options in monogenic autoinflammatory bone disorders and CRMO will be illustrated.}, language = {en} }