@phdthesis{Maierhofer2012, author = {Maierhofer, Tobias}, title = {Funktionelle Charakterisierung von SLAC1-homologen Anionenkan{\"a}len aus Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85406}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {S-Typ (slow)-Anionenkan{\"a}le vermitteln in Schließzellen den Efflux von Chlorid und Nitrat, welcher letztendlich zum Schließen der Stomata, z.B. als Antwort auf Trockenstress, f{\"u}hrt. Dabei kommt dem Phytohormon Abscisins{\"a}ure (ABA) eine zentrale Rolle zu. Es wird als Antwort auf Trockenheit synthetisiert und vermittelt {\"u}ber eine schnelle ABA-Signaltransduktionskette die Aktivierung von S-typ Anionenkan{\"a}len. SLAC1 war die erste Komponente eines S-Typ-Anionenkanals, die in Schließzellen identifiziert wurde. Durch die Expression in Xenopus Oozyten, konnte SLAC1 als S-Typ-Anionenkanal funktionell charakterisiert werden und seine Regulation {\"u}ber Kinasen (OST1, CPK21/23) und Phosphatasen (ABI1, ABI2) beschrieben werden. Mit diesen Untersuchungen gelang ein entscheidender Durchbruch bei der Entschl{\"u}sselung von Netzwerken, welche den Anionentransport in Schließzellen als Antwort auf Trockenstress regulieren. Im Laufe dieser Arbeit konnte in Schließzellen von Arabidopsis auch die Expression des SLAC1 Homolog 3 (SLAH3) nachgewiesen werden. Die Koexpression von SLAH3 mit der Ca2+-abh{\"a}ngigen Proteinkinase CPK21 in Xenopus Oozyten f{\"u}hrte zu Nitrat-induzierten Anionenstr{\"o}men. Dabei wurde die Aktivit{\"a}t dieses S-Typ-Anionenkanals, sowohl durch Phosphorylierung, als auch durch Kalzium und Nitrat gesteuert. {\"A}hnlich wie bei der Regulation von SLAC1 konnte die Aktivit{\"a}t von SLAH3 durch die Proteinphosphatase ABI1, aus der Familie der PP2Cs, blockiert werden. Diese Eigenschaft von ABI1 passt sehr gut zur bekannten Rolle dieser Phosphatase in Schließzellen: ABI1 ist ein negativer Regulator der ABA-Signalkaskade und wird durch ABA inhibiert. Unsere biophysikalischen Analysen f{\"u}hrten schließlich zur Rekonstitution des schnellen ABA-Signaltransduktionsweges. Die Bindung von ABA an den Komplex aus ABA-Rezeptor (RCAR/PYL/PYR) und ABI1 bewirkt die Inaktivierung von ABI1 und somit die Aktivierung von CPK21. F{\"u}r deren volle Aktivit{\"a}t ist eine ABA-abh{\"a}ngige Erh{\"o}hung der zytosolischen Ca2+-Konzentration notwendig. Die aktivierte Kinase CPK21 ist schließlich in der Lage, den Anionenkanal SLAH3 zu phosphorylieren und in der Anwesenheit von Nitrat zu aktivieren. Somit liefert die Identifizierung und Charakterisierung von SLAH3, als den Nitrat-, Kalzium- und ABA-sensitiven Anionenkanal in Schließzellen, Einblicke in die Beziehung zwischen der Reaktion dieses Zelltyps auf Trockenstress, der Funktion von Nitrat als Signalmolek{\"u}l und dem Nitratmetabolismus. F{\"u}r die meisten h{\"o}heren Pflanzen stellt Nitrat die wichtigste Stickstoffquelle dar. Die Nitrataufnahme {\"u}ber die Wurzel repr{\"a}sentiert daher den entscheidenden Schritt f{\"u}r den Stickstoff-Metabolismus. Ausgehend von den Zellen des Wurzelkortex muss das Nitrat f{\"u}r den Langstreckentransport in die oberen Pflanzenorgane, in die Xylemgef{\"a}ße der Stele eingebracht werden. Die Identifikation von Proteinen und Genen, die f{\"u}r den Nitrattransport verantwortlich sind, ist f{\"u}r das Verst{\"a}ndnis der Nitrataufnahme und -verteilung in der Pflanze eine Grundvoraussetzung. Dabei scheinen Protonen-gekoppelte Transporter der NRT1-, bzw. NRT2-Klasse, die Verschiebung von Nitrat aus dem Boden in die Wurzeln zu bewerkstelligen. Aus der Endodermis, bzw. den Xylem-Parenchymzellen muss Nitrat anschließend in das extrazellul{\"a}re Medium der Xylemgef{\"a}ße freigegeben werden, um {\"u}ber den Transpirationssog in den Spross zu gelangen. Auch am Transport dieses Anions in das Xylem ist mit NRT1.5 ein Nitrattransporter der NRT1-Klasse beteiligt, jedoch ergaben Experimente an NRT1.5-Verlustmutanten, dass weitere Transportmechanismen f{\"u}r den Efflux von Nitrat in das Xylem existieren m{\"u}ssen. Im Rahmen dieser Doktorarbeit konnte das SLAC1-Homolog 2 (SLAH2) funktionell in Xenopus Oozyten exprimiert werden. Mit Hilfe der BIFC-Methode wurde gezeigt, dass dabei die Interaktion mit der Ca2+-abh{\"a}ngigen Proteinkinase CPK21 essentiell ist. Elektrophysiologische Experimente verdeutlichten, dass SLAH2 einen Nitrat-selektiven S-Typ-Anionenkanal repr{\"a}sentiert, dessen Aktivit{\"a}t gleichzeitig durch die Anwesenheit eben dieses Anions im externen Medium reguliert wird. Durch die Promoter:GUS-Technik gelang es, die Lokalisation von SLAH2 exklusiv in den Zellen der Wurzelstele von Arabidopsis nachzuweisen. Aufgrund des stark negativen Membranpotentials pflanzlicher Zellen und der vorliegenden Anionengradienten, d{\"u}rften Anionenkan{\"a}le in erster Linie den Ausstrom von Anionen vermitteln. Da in Nitrat-Aufnahme-Experimenten an SLAH2-Verlustmutanten, im Vergleich zu Wildtyp-Pflanzen, ein geringerer Nitratgehalt im Spross, dagegen eine h{\"o}here Konzentration dieses Anions in den Wurzeln zu detektieren war, scheint der S-Typ-Anionenkanal SLAH2 am Transport von Nitrat aus den Wurzeln in die Bl{\"a}tter beteiligt zu sein. Dabei k{\"o}nnte er entweder direkt an der Beladung des Xylems mit Nitrat mitwirken, oder diese durch seine potentielle Funktion als Nitratsensor regulieren.}, subject = {Ackerschmalwand}, language = {de} }