@article{ElHawarySayedMohammedetal.2019, author = {El-Hawary, Seham S. and Sayed, Ahmed M. and Mohammed, Rabab and Hassan, Hossam M. and Rateb, Mostafa E. and Amin, Elham and Mohammed, Tarek A. and El-Mesery, Mohamed and Bin Muhsinah, Abdullatif and Alsayari, Abdulrhman and Wajant, Harald and Anany, Mohamed A. and Abdelmohsen, Usama Ramadan}, title = {Bioactive brominated oxindole alkaloids from the Red Sea sponge Callyspongia siphonella}, series = {Marine Drugs}, volume = {17}, journal = {Marine Drugs}, number = {8}, doi = {10.3390/md17080465}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201485}, pages = {465}, year = {2019}, abstract = {In the present study, LC-HRESIMS-assisted dereplication along with bioactivity-guided isolation led to targeting two brominated oxindole alkaloids (compounds 1 and 2) which probably play a key role in the previously reported antibacterial, antibiofilm, and cytotoxicity of Callyspongia siphonella crude extracts. Both metabolites showed potent antibacterial activity against Gram-positive bacteria, Staphylococcus aureus (minimum inhibitory concentration (MIC) = 8 and 4 µg/mL) and Bacillus subtilis (MIC = 16 and 4 µg/mL), respectively. Furthermore, they displayed moderate biofilm inhibitory activity in Pseudomonas aeruginosa (49.32\% and 41.76\% inhibition, respectively), and moderate in vitro antitrypanosomal activity (13.47 and 10.27 µM, respectively). In addition, they revealed a strong cytotoxic effect toward different human cancer cell lines, supposedly through induction of necrosis. This study sheds light on the possible role of these metabolites (compounds 1 and 2) in keeping fouling organisms away from the sponge outer surface, and the possible applications of these defensive molecules in the development of new anti-infective agents.}, language = {en} }