@article{ShityakovBroscheitFoerster2013, author = {Shityakov, Sergey and Broscheit, Jens and F{\"o}rster, Carola}, title = {Multidrug resistance protein P-gp interaction with nanoparticles (fullerenes and carbon nanotube) to assess their drug delivery potential: a theoretical molecular docking study.}, series = {International journal of computational biology and drug design}, volume = {6}, journal = {International journal of computational biology and drug design}, number = {4}, doi = {10.1504/IJCBDD.2013.056801}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132089}, pages = {343-357}, year = {2013}, abstract = {P-glycoprotein (P-gp)-mediated efflux system plays an important role to maintain chemical balance in mammalian cells for endogenous and exogenous chemical compounds. However, despite the extensive characterisation of P-gp potential interaction with drug-like molecules, the interaction of carbon nanoparticles with this type of protein molecule is poorly understood. Thus, carbon nanoparticles were analysed, such as buckminsterfullerenes (C20, C60, C70), capped armchair single-walled carbon nanotube (SWCNT or C168), and P-gp interactions using different molecular docking techniques, such as gradient optimisation algorithm (ADVina), Lamarckian genetic algorithm (FastDock), and shape-based approach (PatchDock) to estimate the binding affinities between these structures. The theoretical results represented in this work show that fullerenes might be P-gp binders because of low levels of Gibbs free energy of binding (ΔG) and potential of mean force (PMF) values. Furthermore, the SWCNT binding is energetically unfavourable, leading to a total decrease in binding affinity by elevation of the residual area (Ares), which also affects the π-π stacking mechanisms. Further, the obtained data could potentially call experimental studies using carbon nanostructures, such as SWCNT for development of drug delivery vehicles, to administer and assess drug-like chemical compounds to the target cells since organisms probably did not develop molecular sensing elements to detect these types of carbon molecules.}, language = {en} } @article{SchuhmannFluri2017, author = {Schuhmann, Michael K. and Fluri, Felix}, title = {Effects of fullerenols on mouse brain microvascular endothelial cells}, series = {International Journal of Molecular Sciences}, volume = {18}, journal = {International Journal of Molecular Sciences}, number = {8}, issn = {1422-0067}, doi = {10.3390/ijms18081783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158072}, year = {2017}, abstract = {Fullerenols, water-soluble C60-fullerene derivatives, have been shown to exert neuroprotective effects in vitro and in vivo, most likely due to their capability to scavenge free radicals. However, little is known about the effects of fullerenols on the blood-brain barrier (BBB), especially on cerebral endothelial cells under inflammatory conditions. Here, we investigated whether the treatment of primary mouse brain microvascular endothelial cells with fullerenols impacts basal and inflammatory blood-brain barrier (BBB) properties in vitro. While fullerenols (1, 10, and 100 µg/mL) did not change transendothelial electrical resistance under basal and inflammatory conditions, 100 µg/mL of fullerenol significantly reduced erk1/2 activation and resulted in an activation of NFκB in an inflammatory milieu. Our findings suggest that fullerenols might counteract oxidative stress via the erk1/2 and NFκB pathways, and thus are able to protect microvascular endothelial cells under inflammatory conditions.}, language = {en} } @article{LehmannDechantWehetal.2020, author = {Lehmann, Matthias and Dechant, Moritz and Weh, Dominik and Freytag, Emely}, title = {Metal Phthalocyanine-Fullerene Dyads: Promising Lamellar Columnar Donor-Acceptor Liquid Crystal Phases}, series = {ChemPlusChem}, volume = {85}, journal = {ChemPlusChem}, number = {8}, doi = {10.1002/cplu.202000540}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218531}, pages = {1934 -- 1938}, year = {2020}, abstract = {Liquid crystal (LC) shape-amphiphiles with a disc tethered to a fullerene have been intensely studied for the application in photovoltaics, and helical nanosegregation of C\(_{60}\) has been claimed around the π-stacking disks based on X-ray results. The most promising materials reported to date have been resynthesized and studied comprehensively by XRS, density measurements, modelling, and electron density reconstruction. In contrast to previous reports, the results indicate that metal phthalocyanine-fullerene mesogens pack in lamellar columnar phases with p2gm symmetry. Fullerenes assemble in layers and are flanked by phthalocyanine columns, thus explaining the balanced charge carrier mobility of electrons and holes. Such variable donor-acceptor structures are promising for organic electronic applications.}, language = {en} } @article{KraftStanglKrauseetal.2017, author = {Kraft, Andreas and Stangl, Johannes and Krause, Ana-Maria and M{\"u}ller-Buschbaum, Klaus and Beuerle, Florian}, title = {Supramolecular frameworks based on [60]fullerene hexakisadducts}, series = {Beilstein Journal of Organic Chemistry}, volume = {13}, journal = {Beilstein Journal of Organic Chemistry}, doi = {10.3762/bjoc.13.1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171996}, pages = {1-9}, year = {2017}, abstract = {[60]Fullerene hexakisadducts possessing 12 carboxylic acid side chains form crystalline hydrogen-bonding frameworks in the solid state. Depending on the length of the linker between the reactive sites and the malonate units, the distance of the [60]fullerene nodes and thereby the spacing of the frameworks can be controlled and for the most elongated derivative, continuous channels are obtained within the structure. Stability, structural integrity and porosity of the material were investigated by powder X-ray diffraction, thermogravimetry and sorption measurements.}, language = {en} }