@article{AbdElAzizElMaghrabyEwaldetal.2021, author = {Abd El-Aziz, Asmaa M. and El-Maghraby, Azza and Ewald, Andrea and Kandil, Sherif H.}, title = {In-vitro cytotoxicity study: cell viability and cell morphology of carbon nanofibrous scaffold/hydroxyapatite nanocomposites}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {6}, issn = {1420-3049}, doi = {10.3390/molecules26061552}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234037}, year = {2021}, abstract = {Electrospun carbon nanofibers (CNFs), which were modified with hydroxyapatite, were fabricated to be used as a substrate for bone cell proliferation. The CNFs were derived from electrospun polyacrylonitrile (PAN) nanofibers after two steps of heat treatment: stabilization and carbonization. Carbon nanofibrous (CNF)/hydroxyapatite (HA) nanocomposites were prepared by two different methods; one of them being modification during electrospinning (CNF-8HA) and the second method being hydrothermal modification after carbonization (CNF-8HA; hydrothermally) to be used as a platform for bone tissue engineering. The biological investigations were performed using in-vitro cell counting, WST cell viability and cell morphology after three and seven days. L929 mouse fibroblasts were found to be more viable on the hydrothermally-modified CNF scaffolds than on the unmodified CNF scaffolds. The biological characterizations of the synthesized CNF/HA nanofibrous composites indicated higher capability of bone regeneration.}, language = {en} }