@article{TucaBernardellideMattosFunketal.2022, author = {Tuca, Alexandru-Cristian and Bernardelli de Mattos, Ives and Funk, Martin and Winter, Raimund and Palackic, Alen and Groeber-Becker, Florian and Kruse, Daniel and Kukla, Fabian and Lemarchand, Thomas and Kamolz, Lars-Peter}, title = {Orchestrating the dermal/epidermal tissue ratio during wound healing by controlling the moisture content}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {6}, issn = {2227-9059}, doi = {10.3390/biomedicines10061286}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275115}, year = {2022}, abstract = {A balanced and moist wound environment and surface increases the effect of various growth factors, cytokines, and chemokines, stimulating cell growth and wound healing. Considering this fact, we tested in vitro and in vivo water evaporation rates from the cellulose dressing epicite\(^{hydro}\) when combined with different secondary dressings as well as the resulting wound healing efficacy in a porcine donor site model. The aim of this study was to evaluate how the different rates of water evaporation affected wound healing efficacy. To this end, epicite\(^{hydro}\) primary dressing, in combination with different secondary dressing materials (cotton gauze, JELONET\(^◊\), AQUACEL\(^®\) Extra\(^™\), and OPSITE\(^◊\) Flexifix), was placed on 3 × 3 cm-sized dermatome wounds with a depth of 1.2 mm on the flanks of domestic pigs. The healing process was analyzed histologically and quantified by morphometry. High water evaporation rates by using the correct secondary dressing, such as cotton gauze, favored a better re-epithelialization in comparison with the low water evaporation resulting from an occlusive secondary dressing, which favored the formation of a new and intact dermal tissue that nearly fully replaced all the dermis that was removed during wounding. This newly available evidence may be of great benefit to clinical wound management.}, language = {en} } @article{SchneiderKruseBernardellideMattosetal.2021, author = {Schneider, Verena and Kruse, Daniel and Bernardelli de Mattos, Ives and Z{\"o}phel, Saskia and Tiltmann, Kendra-Kathrin and Reigl, Amelie and Khan, Sarah and Funk, Martin and Bodenschatz, Karl and Groeber-Becker, Florian}, title = {A 3D in vitro model for burn wounds: monitoring of regeneration on the epidermal level}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {9}, issn = {2227-9059}, doi = {10.3390/biomedicines9091153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246068}, year = {2021}, abstract = {Burns affect millions every year and a model to mimic the pathophysiology of such injuries in detail is required to better understand regeneration. The current gold standard for studying burn wounds are animal models, which are under criticism due to ethical considerations and a limited predictiveness. Here, we present a three-dimensional burn model, based on an open-source model, to monitor wound healing on the epidermal level. Skin equivalents were burned, using a preheated metal cylinder. The healing process was monitored regarding histomorphology, metabolic changes, inflammatory response and reepithelialization for 14 days. During this time, the wound size decreased from 25\% to 5\% of the model area and the inflammatory response (IL-1β, IL-6 and IL-8) showed a comparable course to wounding and healing in vivo. Additionally, the topical application of 5\% dexpanthenol enhanced tissue morphology and the number of proliferative keratinocytes in the newly formed epidermis, but did not influence the overall reepithelialization rate. In summary, the model showed a comparable healing process to in vivo, and thus, offers the opportunity to better understand the physiology of thermal burn wound healing on the keratinocyte level.}, language = {en} }