@article{WeiglBlumSanchoetal.2022, author = {Weigl, Franziska and Blum, Carina and Sancho, Ana and Groll, J{\"u}rgen}, title = {Correlative Analysis of Intra- Versus Extracellular Cell Detachment Events via the Alignment of Optical Imaging and Detachment Force Quantification}, series = {Advanced Materials Technologies}, volume = {7}, journal = {Advanced Materials Technologies}, number = {11}, issn = {2365-709X}, doi = {10.1002/admt.202200195}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318544}, year = {2022}, abstract = {In recent decades, hybrid characterization systems have become pillars in the study of cellular biomechanics. Especially, Atomic Force Microscopy (AFM) is combined with a variety of optical microscopy techniques to discover new aspects of cell adhesion. AFM, however, is limited to the early-stage of cell adhesion, so that the forces of mature cell contacts cannot be addressed. Even though the invention of Fluidic Force Microscopy (FluidFM) overcomes these limitations by combining the precise force-control of AFM with microfluidics, the correlative investigation of detachment forces arising from spread mammalian cells has been barely achieved. Here, a novel multifunctional device integrating Fluorescence Microscopy (FL) into FluidFM technology (FL-FluidFM) is introduced, enabling real-time optical tracking of entire cell detachment processes in parallel to the undisturbed acquisition of force-distance curves. This setup, thus, allows for entailing two pieces of information at once. As proof-of-principle experiment, this method is applied to fluorescently labeled rat embryonic fibroblast (REF52) cells, demonstrating a precise matching between identified force-jumps and visualized cellular unbinding steps. This study, thus, presents a novel characterization tool for the correlated evaluation of mature cell adhesion, which has great relevance, for instance, in the development of biomaterials or the fight against diseases such as cancer.}, language = {en} } @article{GaritanoTrojaolaSanchoGoetzetal.2021, author = {Garitano-Trojaola, Andoni and Sancho, Ana and G{\"o}tz, Ralph and Eiring, Patrick and Walz, Susanne and Jetani, Hardikkumar and Gil-Pulido, Jesus and Da Via, Matteo Claudio and Teufel, Eva and Rhodes, Nadine and Haertle, Larissa and Arellano-Viera, Estibaliz and Tibes, Raoul and Rosenwald, Andreas and Rasche, Leo and Hudecek, Michael and Sauer, Markus and Groll, J{\"u}rgen and Einsele, Hermann and Kraus, Sabrina and Kort{\"u}m, Martin K.}, title = {Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-021-02215-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260709}, year = {2021}, abstract = {The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD+AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD+AML. Garitano-Trojaola et al. used a combination of human acute myeloid leukemia (AML) cell lines and primary samples to show that RAC1-dependent actin cytoskeleton remodeling through BCL2 family plays a key role in resistance to the FLT3 inhibitor, Midostaurin in AML. They showed that by targeting RAC1 and BCL2, Midostaurin resistance was diminished, which potentially paves the way for an innovate treatment approach for FLT3 mutant AML.}, language = {en} } @article{SanchoVandersmissenCrapsetal.2017, author = {Sancho, Ana and Vandersmissen, Ine and Craps, Sander and Luttun, Aernout and Groll, J{\"u}rgen}, title = {A new strategy to measure intercellular adhesion forces in mature cell-cell contacts}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {46152}, doi = {10.1038/srep46152}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170999}, year = {2017}, abstract = {Intercellular adhesion plays a major role in tissue development and homeostasis. Yet, technologies to measure mature cell-cell contacts are not available. We introduce a methodology based on fluidic probe force microscopy to assess cell-cell adhesion forces after formation of mature intercellular contacts in cell monolayers. With this method we quantify that L929 fibroblasts exhibit negligible cell-cell adhesion in monolayers whereas human endothelial cells from the umbilical artery (HUAECs) exert strong intercellular adhesion forces per cell. We use a new in vitro model based on the overexpression of Muscle Segment Homeobox 1 (MSX1) to induce Endothelial-to-Mesenchymal Transition (EndMT), a process involved in cardiovascular development and disease. We reveal how intercellular adhesion forces in monolayer decrease significantly at an early stage of EndMT and we show that cells undergo stiffening and flattening at this stage. This new biomechanical insight complements and expands the established standard biomolecular analyses. Our study thus introduces a novel tool for the assessment of mature intercellular adhesion forces in a physiological setting that will be of relevance to biological processes in developmental biology, tissue regeneration and diseases like cancer and fibrosis.}, language = {en} }