@phdthesis{Sharifi2022, author = {Sharifi, Marzieh}, title = {Structural plasticity of active zones in mouse hippocampal mossy fiber synapses}, doi = {10.25972/OPUS-27543}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275433}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Chemical synapses are a physically and functionally varied type of cell-cell contact specialized in conducting communication between neurons. They are the smallest "computational" unit of the brain and are often classified as electrical and chemical, and they can be distinguished based on their transmission mechanism. These categories could be further broken into many kinds, each having a specific structure-function repertoire that is hypothesized to provide neural networks with distinct computational capabilities. Heterogeneity refers to the variety of structures and functions present in a particular category of synapses. Contributing factors for this heterogeneity may be the synaptic vesicles, the active zone (AZ), the synaptic cleft, the postsynaptic density, and the glial processes associated with the synaptic contacts. Each of these five structural modules has its own set of functions, and their combination determines the spectrum of functional heterogeneity at mammalian excitatory synapses. This work focused on the changes in AZ protein expression after chemical induction of plasticity with forskolin in synaptic contacts of the hippocampal mossy fibers. With the nanoscopic resolution provided by dSTORM, along with the multicolor SIM imaging capabilities, changes in expression of key presynaptic AZ components were analyzed. Using SIM imaging along with a standardized stimulation protocol in acute brain slices from male 16-week old Thy1-mEGFP (Lsi1) mice, the changes of the key AZ proteins Bassoon, Munc 13-1 and Tomosyn were investigated 30 min after stimulation with forskolin (50 μM for 30 min). Forskolin induced changes in these proteins largely in small synaptic contacts whereas no clear changes were detected in large mossy fiber boutons. However, due to the high variability it cannot be ruled out that forskolin may differentially modify AZ protein composition depending on experimental circumstances such as age and gender of mice or the time point and duration of forskolin stimulation. The dSTORM data demonstrated feasibility to perform single molecule 3D imaging of hippocampal presynaptic AZs and allowed quantitative mapping of molecular changes in AZ proteins after induction of plasticity. The findings suggest high heterogeneity in mossy fiber synaptic contacts that may have an impact on the function of neural networks. These imaging approaches may now be used to identify potential differences in functional molecular rearrangements of synaptic proteins in healthy and diseased brain (e.g. after induction of traumatic brain injury).}, subject = {Chemische Synapsen}, language = {en} } @article{PauliPaulProppertetal.2021, author = {Pauli, Martin and Paul, Mila M. and Proppert, Sven and Mrestani, Achmed and Sharifi, Marzieh and Repp, Felix and K{\"u}rzinger, Lydia and Kollmannsberger, Philip and Sauer, Markus and Heckmann, Manfred and Sir{\´e}n, Anna-Leena}, title = {Targeted volumetric single-molecule localization microscopy of defined presynaptic structures in brain sections}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, doi = {10.1038/s42003-021-01939-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259830}, pages = {407}, year = {2021}, abstract = {Revealing the molecular organization of anatomically precisely defined brain regions is necessary for refined understanding of synaptic plasticity. Although three-dimensional (3D) single-molecule localization microscopy can provide the required resolution, imaging more than a few micrometers deep into tissue remains challenging. To quantify presynaptic active zones (AZ) of entire, large, conditional detonator hippocampal mossy fiber (MF) boutons with diameters as large as 10 mu m, we developed a method for targeted volumetric direct stochastic optical reconstruction microscopy (dSTORM). An optimized protocol for fast repeated axial scanning and efficient sequential labeling of the AZ scaffold Bassoon and membrane bound GFP with Alexa Fluor 647 enabled 3D-dSTORM imaging of 25 mu m thick mouse brain sections and assignment of AZs to specific neuronal substructures. Quantitative data analysis revealed large differences in Bassoon cluster size and density for distinct hippocampal regions with largest clusters in MF boutons. Pauli et al. develop targeted volumetric dSTORM in order to image large hippocampal mossy fiber boutons (MFBs) in brain slices. They can identify synaptic targets of individual MFBs and measured size and density of Bassoon clusters within individual untruncated MFBs at nanoscopic resolution.}, language = {en} }