@article{SchusterLisackSubotaetal.2021, author = {Schuster, Sarah and Lisack, Jaime and Subota, Ines and Zimmermann, Henriette and Reuter, Christian and Mueller, Tobias and Morriswood, Brooke and Engstler, Markus}, title = {Unexpected plasiticty in the life cycle of Trypanosoma brucei}, series = {eLife}, volume = {10}, journal = {eLife}, doi = {10.7554/eLife.66028.sa2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261744}, year = {2021}, abstract = {African trypanosomes cause sleeping sickness in humans and nagana in cattle. These unicellular parasites are transmitted by the bloodsucking tsetse fly. In the mammalian host's circulation, proliferating slender stage cells differentiate into cell cycle-arrested stumpy stage cells when they reach high population densities. This stage transition is thought to fulfil two main functions: first, it auto-regulates the parasite load in the host; second, the stumpy stage is regarded as the only stage capable of successful vector transmission. Here, we show that proliferating slender stage trypanosomes express the mRNA and protein of a known stumpy stage marker, complete the complex life cycle in the fly as successfully as the stumpy stage, and require only a single parasite for productive infection. These findings suggest a reassessment of the traditional view of the trypanosome life cycle. They may also provide a solution to a long-lasting paradox, namely the successful transmission of parasites in chronic infections, despite low parasitemia.}, language = {en} } @article{SchusterKruegerSubotaetal.2017, author = {Schuster, Sarah and Kr{\"u}ger, Timothy and Subota, Ines and Thusek, Sina and Rotureau, Brice and Beilhack, Andreas and Engstler, Markus}, title = {Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system}, series = {eLife}, volume = {6}, journal = {eLife}, doi = {10.7554/eLife.27656}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158662}, pages = {e27656}, year = {2017}, abstract = {The highly motile and versatile protozoan pathogen Trypanosoma brucei undergoes a complex life cycle in the tsetse fly. Here we introduce the host insect as an expedient model environment for microswimmer research, as it allows examination of microbial motion within a diversified, secluded and yet microscopically tractable space. During their week-long journey through the different microenvironments of the fly´s interior organs, the incessantly swimming trypanosomes cross various barriers and confined surroundings, with concurrently occurring major changes of parasite cell architecture. Multicolour light sheet fluorescence microscopy provided information about tsetse tissue topology with unprecedented resolution and allowed the first 3D analysis of the infection process. High-speed fluorescence microscopy illuminated the versatile behaviour of trypanosome developmental stages, ranging from solitary motion and near-wall swimming to collective motility in synchronised swarms and in confinement. We correlate the microenvironments and trypanosome morphologies to high-speed motility data, which paves the way for cross-disciplinary microswimmer research in a naturally evolved environment.}, language = {en} } @article{ZimmermannSubotaBatrametal.2017, author = {Zimmermann, Henriette and Subota, Ines and Batram, Christopher and Kramer, Susanne and Janzen, Christian J. and Jones, Nicola G. and Engstler, Markus}, title = {A quorum sensing-independent path to stumpy development in Trypanosoma brucei}, series = {PLoS Pathogens}, volume = {13}, journal = {PLoS Pathogens}, number = {4}, doi = {10.1371/journal.ppat.1006324}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158230}, pages = {e1006324}, year = {2017}, abstract = {For persistent infections of the mammalian host, African trypanosomes limit their population size by quorum sensing of the parasite-excreted stumpy induction factor (SIF), which induces development to the tsetse-infective stumpy stage. We found that besides this cell density-dependent mechanism, there exists a second path to the stumpy stage that is linked to antigenic variation, the main instrument of parasite virulence. The expression of a second variant surface glycoprotein (VSG) leads to transcriptional attenuation of the VSG expression site (ES) and immediate development to tsetse fly infective stumpy parasites. This path is independent of SIF and solely controlled by the transcriptional status of the ES. In pleomorphic trypanosomes varying degrees of ES-attenuation result in phenotypic plasticity. While full ES-attenuation causes irreversible stumpy development, milder attenuation may open a time window for rescuing an unsuccessful antigenic switch, a scenario that so far has not been considered as important for parasite survival.}, language = {en} } @article{DejungSubotaBuceriusetal.2016, author = {Dejung, Mario and Subota, Ines and Bucerius, Ferdinand and Dindar, G{\"u}lcin and Freiwald, Anja and Engstler, Markus and Boshart, Michael and Butter, Falk and Janzen, Chistian J.}, title = {Quantitative proteomics uncovers novel factors involved in developmental differentiation of Trypanosoma brucei}, series = {PLoS Pathogens}, volume = {12}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1005439}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146362}, pages = {e1005439}, year = {2016}, abstract = {Developmental differentiation is a universal biological process that allows cells to adapt to different environments to perform specific functions. African trypanosomes progress through a tightly regulated life cycle in order to survive in different host environments when they shuttle between an insect vector and a vertebrate host. Transcriptomics has been useful to gain insight into RNA changes during stage transitions; however, RNA levels are only a moderate proxy for protein abundance in trypanosomes. We quantified 4270 protein groups during stage differentiation from the mammalian-infective to the insect form and provide classification for their expression profiles during development. Our label-free quantitative proteomics study revealed previously unknown components of the differentiation machinery that are involved in essential biological processes such as signaling, posttranslational protein modifications, trafficking and nuclear transport. Furthermore, guided by our proteomic survey, we identified the cause of the previously observed differentiation impairment in the histone methyltransferase DOT1B knock-out strain as it is required for accurate karyokinesis in the first cell division during differentiation. This epigenetic regulator is likely involved in essential chromatin restructuring during developmental differentiation, which might also be important for differentiation in higher eukaryotic cells. Our proteome dataset will serve as a resource for detailed investigations of cell differentiation to shed more light on the molecular mechanisms of this process in trypanosomes and other eukaryotes.}, language = {en} } @article{FritzVanselowSaueretal.2015, author = {Fritz, Melanie and Vanselow, Jens and Sauer, Nadja and Lamer, Stephanie and Goos, Carina and Siegel, T. Nicolai and Subota, Ines and Schlosser, Andreas and Carrington, Mark and Kramer, Susanne}, title = {Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve}, series = {Nucleic Acids Research}, journal = {Nucleic Acids Research}, doi = {10.1093/nar/gkv731}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126180}, year = {2015}, abstract = {RNP granules are ribonucleoprotein assemblies that regulate the post-transcriptional fate of mRNAs in all eukaryotes. Their exact function remains poorly understood, one reason for this is that RNP granule purification has not yet been achieved. We have exploited a unique feature of trypanosomes to prepare a cellular fraction highly enriched in starvation stress granules. First, granules remain trapped within the cage-like, subpellicular microtubule array of the trypanosome cytoskeleton while soluble proteins are washed away. Second, the microtubules are depolymerized and the granules are released. RNA sequencing combined with single molecule mRNA FISH identified the short and highly abundant mRNAs encoding ribosomal mRNAs as being excluded from granules. By mass spectrometry we have identified 463 stress granule candidate proteins. For 17/49 proteins tested by eYFP tagging we have confirmed the localization to granules, including one phosphatase, one methyltransferase and two proteins with a function in trypanosome life-cycle regulation. The novel method presented here enables the unbiased identification of novel RNP granule components, paving the way towards an understanding of RNP granule function.}, language = {en} }