@article{TufarelliFriedrichGrossetal.2021, author = {Tufarelli, Tommaso and Friedrich, Daniel and Groß, Heiko and Hamm, Joachim and Hess, Ortwin and Hecht, Bert}, title = {Single quantum emitter Dicke enhancement}, series = {Physical Review Research}, volume = {3}, journal = {Physical Review Research}, doi = {10.1103/PhysRevResearch.3.033103}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261459}, year = {2021}, abstract = {Coupling N identical emitters to the same field mode is a well-established method to enhance light-matter interaction. However, the resulting √N boost of the coupling strength comes at the cost of a "linearized" (effectively semiclassical) dynamics. Here, we instead demonstrate a new approach for enhancing the coupling constant of a single quantum emitter, while retaining the nonlinear character of the light-matter interaction. We consider a single quantum emitter with N nearly degenerate transitions that are collectively coupled to the same field mode. We show that in such conditions an effective Jaynes-Cummings model emerges with a boosted coupling constant of order √N. The validity and consequences of our general conclusions are analytically demonstrated for the instructive case N=2. We further observe that our system can closely match the spectral line shapes and photon autocorrelation functions typical of Jaynes-Cummings physics, proving that quantum optical nonlinearities are retained. Our findings match up very well with recent broadband plasmonic nanoresonator strong-coupling experiments and will, therefore, facilitate the control and detection of single-photon nonlinearities at ambient conditions.}, language = {en} } @phdthesis{Gross2019, author = {Groß, Heiko}, title = {Controlling Light-Matter Interaction between Localized Surface Plasmons and Quantum Emitters}, doi = {10.25972/OPUS-19209}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192097}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Metal nanostructures have been known for a long time to exhibit optical resonances via localized surface plasmons. The high electric fields in close proximity to the metal surface have prospects to dramatically change the dynamics of electronic transitions, such as an enhanced spontaneous decay rate of a single emitter. However, there have been two major issues which impede advances in the experimental realization of enhanced light-matter interaction. (i) The fabrication of high-quality resonant structures requires state-of-the-art patterning techniques in combination with superior materials. (ii) The tiny extension of the optical near-field requires precise control of the single emitter with respect to the nanostructure. This work demonstrates a solution to these problems by combining scanning probe and optical confocal microscopy. Here, a novel type of scanning probe is introduced which features a tip composed of the edge of a single crystalline gold sheet. The patterning via focused ion beam milling makes it possible to introduce a plasmonic nanoresonator directly at the apex of the tip. Numerical simulations demonstrate that the optical properties of this kind of scanning probe are ideal to analyze light-matter interaction. Detailed experimental studies investigate the coupling mechanism between a localized plasmon and single colloidal quantum dots by dynamically changing coupling strength via their spatial separation. The results have shown that weak interaction affects the shape of the fluorescence spectrum as well as the polarization. For the best probes it has been found that it is possible to reach the strong coupling regime at the single emitter level at room temperature. The resulting analysis of the experimental data and the proposed theoretical models has revealed the differences between the established far-field coupling and near-field coupling. It has been found that the broad bandwidth of plasmonic resonances are able to establish coherent coupling to multiple transitions simultaneously giving rise to an enhanced effective coupling strength. It has also been found that the current model to numerically calculate the effective mode volume is inaccurate in case of mesoscopic emitters and strong coupling. Finally, light-matter interaction is investigated by the means of a quantum-dot-decorated microtubule which is traversing a localized nearfield by gliding on kinesin proteins. This biological transport mechanism allows the parallel probing of a meta-surface with nm-precision. The results that have been put forward throughout this work have shed new light on the understanding of plasmonic light-matter interaction and might trigger ideas on how to more efficiently combine the power of localized electric fields and novel excitonic materials.}, subject = {Plasmon}, language = {en} }