@article{SacchettoSequeiraBerteroetal.2019, author = {Sacchetto, Claudia and Sequeira, Vasco and Bertero, Edoardo and Dudek, Jan and Maack, Christoph and Calore, Martina}, title = {Metabolic Alterations in Inherited Cardiomyopathies}, series = {Journal of Clinical Medicine}, volume = {8}, journal = {Journal of Clinical Medicine}, number = {12}, issn = {2077-0383}, doi = {10.3390/jcm8122195}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193806}, year = {2019}, abstract = {The normal function of the heart relies on a series of complex metabolic processes orchestrating the proper generation and use of energy. In this context, mitochondria serve a crucial role as a platform for energy transduction by supplying ATP to the varying demand of cardiomyocytes, involving an intricate network of pathways regulating the metabolic flux of substrates. The failure of these processes results in structural and functional deficiencies of the cardiac muscle, including inherited cardiomyopathies. These genetic diseases are characterized by cardiac structural and functional anomalies in the absence of abnormal conditions that can explain the observed myocardial abnormality, and are frequently associated with heart failure. Since their original description, major advances have been achieved in the genetic and phenotype knowledge, highlighting the involvement of metabolic abnormalities in their pathogenesis. This review provides a brief overview of the role of mitochondria in the energy metabolism in the heart and focuses on metabolic abnormalities, mitochondrial dysfunction, and storage diseases associated with inherited cardiomyopathies.}, language = {en} } @article{SeidlmayerMagesBerbneretal.2019, author = {Seidlmayer, Lea K. and Mages, Christine and Berbner, Annette and Eder-Negrin, Petra and Arias-Loza, Paula Anahi and Kaspar, Mathias and Song, Moshi and Dorn, Gerald W. and Kohlhaas, Michael and Frantz, Stefan and Maack, Christoph and Gerull, Brenda and Dedkova, Elena N.}, title = {Mitofusin 2 is essential for IP3-mediated SR/Mitochondria metabolic feedback in ventricular myocytes}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, number = {733}, issn = {1664-042X}, doi = {10.3389/fphys.2019.00733}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199141}, year = {2019}, abstract = {Aim: Endothelin-1 (ET-1) and angiotensin II (Ang II) are multifunctional peptide hormones that regulate the function of the cardiovascular and renal systems. Both hormones increase the intracellular production of inositol-1,4,5-trisphosphate (IP\(_3\)) by activating their membrane-bound receptors. We have previously demonstrated that IP\(_3\)-mediated sarcoplasmic reticulum (SR) Ca\(^{2+}\) release results in mitochondrial Ca\(^{2+}\) uptake and activation of ATP production. In this study, we tested the hypothesis that intact SR/mitochondria microdomains are required for metabolic IP\(_3\)-mediated SR/mitochondrial feedback in ventricular myocytes. Methods: As a model for disrupted mitochondrial/SR microdomains, cardio-specific tamoxifen-inducible mitofusin 2 (Mfn2) knock out (KO) mice were used. Mitochondrial Ca\(^{2+}\) uptake, membrane potential, redox state, and ATP generation were monitored in freshly isolated ventricular myocytes from Mfn2 KO mice and their control wild-type (WT) littermates. Results: Stimulation of ET-1 receptors in healthy control myocytes increases mitochondrial Ca\(^{2+}\) uptake, maintains mitochondrial membrane potential and redox balance leading to the enhanced ATP generation. Mitochondrial Ca\(^{2+}\) uptake upon ET-1 stimulation was significantly higher in interfibrillar (IFM) and perinuclear (PNM) mitochondria compared to subsarcolemmal mitochondria (SSM) in WT myocytes. Mfn2 KO completely abolished mitochondrial Ca\(^{2+}\) uptake in IFM and PNM mitochondria but not in SSM. However, mitochondrial Ca2+ uptake induced by beta-adrenergic receptors activation with isoproterenol (ISO) was highest in SSM, intermediate in IFM, and smallest in PNM regions. Furthermore, Mfn2 KO did not affect ISO-induced mitochondrial Ca\(^{2+}\) uptake in SSM and IFM mitochondria; however, enhanced mitochondrial Ca\(^{2+}\) uptake in PNM. In contrast to ET-1, ISO induced a decrease in ATP levels in WT myocytes. Mfn2 KO abolished ATP generation upon ET-1 stimulation but increased ATP levels upon ISO application with highest levels observed in PNM regions. Conclusion: When the physical link between SR and mitochondria by Mfn2 was disrupted, the SR/mitochondrial metabolic feedback mechanism was impaired resulting in the inability of the IP\(_3\)-mediated SR Ca\(^{2+}\) release to induce ATP production in ventricular myocytes from Mfn2 KO mice. Furthermore, we revealed the difference in Mfn2-mediated SR-mitochondrial communication depending on mitochondrial location and type of communication (IP\(_3\)R-mRyR1 vs. ryanodine receptor type 2-mitochondrial calcium uniporter).}, language = {en} }