@article{LapaReiterKircheretal.2016, author = {Lapa, Constantin and Reiter, Theresa and Kircher, Malte and Schirbel, Andreas and Werner, Rudolf A. and Pelzer, Theo and Pizarro, Carmen and Skowasch, Dirk and Thomas, Lena and Schlesinger-Irsch, Ulrike and Thomas, Daniel and Bundschuh, Ralph A. and Bauer, Wolfgang R. and Gartner, Florian C.}, title = {Somatostatin receptor based PET/CT in patients with the suspicion of cardiac sarcoidosis: an initial comparison to cardiac MRI}, series = {Oncotarget}, volume = {7}, journal = {Oncotarget}, number = {47}, doi = {10.18632/oncotarget.12799}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175423}, pages = {77807-77814}, year = {2016}, abstract = {Diagnosis of cardiac sarcoidosis is often challenging. Whereas cardiac magnetic resonance imaging (CMR) and positron emission tomography/computed tomography (PET/CT) with \(^{18}\)F-fluorodeoxyglucose (FDG) are most commonly used to evaluate patients, PET/CT using radiolabeled somatostatin receptor (SSTR) ligands for visualization of inflammation might represent a more specific alternative. This study aimed to investigate the feasibility of SSTR-PET/CT for detecting cardiac sarcoidosis in comparison to CMR. 15 patients (6 males, 9 females) with sarcoidosis and suspicion on cardiac involvement underwent SSTR-PET/CT imaging and CMR. Images were visually scored. The AHA 17-segment model of the left myocardium was used for localization and comparison of inflamed myocardium for both imaging modalities. In semi-quantitative analysis, mean (SUV\(_{mean}\)) and maximum standardized uptake values (SUV\(_{max}\)) of affected myocardium were calculated and compared with both remote myocardium and left ventricular (LV) cavity. SSTR-PET was positive in 7/15, CMR in 10/15 patients. Of the 3 CMR+/PET- subjects, one patient with minor involvement (<25\% of wall thickness in CMR) was missed by PET. The remaining two CMR+/PET- patients displayed no adverse cardiac events during follow-up. In the 17-segment model, PET/CT yielded 27 and CMR 29 positive segments. Overall concordance of the 2 modalities was 96.1\% (245/255 segments analyzed). SUV\(_{mean}\) and SUV\(_{max}\) in inflamed areas were 2.0±1.2 and 2.6±1.2, respectively. The lesion-to-remote myocardium and lesion-to-LV cavity ratios were 1.8±0.2 and 1.9±0.2 for SUV\(_{mean}\) and 2.0±0.3 and 1.7±0.3 for SUV\(_{max}\), respectively. Detection of cardiac sarcoidosis by SSTR-PET/CT is feasible. Our data warrant further analysis in larger prospective series.}, language = {en} } @unpublished{WernerBundschuhBundschuhetal.2018, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Bundschuh, Lena and Javadi, Mehrbod S. and Leal, Jeffrey P. and Higuchi, Takahiro and Pienta, Kenneth J. and Buck, Andreas K. and Pomper, Martin G. and Gorin, Michael A. and Lapa, Constantin and Rowe, Steven P.}, title = {Interobserver Agreement for the Standardized Reporting System PSMA-RADS 1.0 on \(^{18}\)F-DCFPyL PET/CT Imaging}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.118.217588}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167788}, year = {2018}, abstract = {Objectives: Recently, the standardized reporting and data system for prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) imaging studies, termed PSMA-RADS version 1.0, was introduced. We aimed to determine the interobserver agreement for applying PSMA-RADS to imaging interpretation of 18F-DCFPyL PET examinations in a prospective setting mimicking the typical clinical work-flow at a prostate cancer referral center. Methods: Four readers (two experienced readers (ER, > 3 years of PSMA-targeted PET interpretation experience) and two inexperienced readers (IR, < 1 year of experience)), who had all read the initial publication on PSMA-RADS 1.0, assessed 50 18F-DCFPyL PET/computed tomography (CT) studies independently. Per scan, a maximum of 5 target lesions were selected by the observers and a PSMA-RADS score for every target lesion was recorded. No specific pre-existing conditions were placed on the selection of the target lesions, although PSMA-RADS 1.0 suggests that readers focus on the most highly avid or largest lesions. An overall scan impression based on PSMA-RADS was indicated and interobserver agreement rates on a target lesion-based, on an organ-based, and on an overall PSMA-RADS score-based level were computed. Results: The number of target lesions identified by each observer were as follows: ER 1, 123; ER 2, 134; IR 1, 123; and IR 2, 120. Among those selected target lesions, 125 were chosen by at least two individual observers (all four readers selected the same target lesion in 58/125 (46.4\%) instances, three readers in 40/125 (32\%) and two observers in 27/125 (21.6\%) instances). The interobserver agreement for PSMA-RADS scoring among identical target lesions was good (intraclass correlation coefficient (ICC) for four, three and two identical target lesions, ≥0.60, respectively). For lymph nodes, an excellent interobserver agreement was derived (ICC=0.79). The interobserver agreement for an overall scan impression based on PSMA-RADS was also excellent (ICC=0.84), with a significant difference for ER (ICC=0.97) vs. IR (ICC=0.74, P=0.005). Conclusions: PSMA-RADS demonstrates a high concordance rate in this study, even among readers with different levels of experience. This suggests that PSMA-RADS can be effectively used for communication with clinicians and can be implemented in the collection of data for large prospective trials.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerBundschuhHiguchietal.2018, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Higuchi, Takahiro and Javadi, Mehrbod S. and Rowe, Steven P. and Zs{\´o}t{\´e}r, Norbert and Kroiss, Matthias and Fassnacht, Martin and Buck, Andreas K. and Kreissl, Michael C. and Lapa, Constantin}, title = {Volumetric and Texture Analysis of Pretherapeutic \(^{18}\)F-FDG PET can Predict Overall Survival in Medullary Thyroid Cancer Patients Treated with Vandetanib}, series = {Endocrine}, journal = {Endocrine}, issn = {1355-008X}, doi = {10.1007/s12020-018-1749-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167910}, year = {2018}, abstract = {Purpose: The metabolically most active lesion in 2-deoxy-2-(\(^{18}\)F)fluoro-D-glucose (\(^{18}\)F-FDG) PET/CT can predict progression-free survival (PFS) in patients with medullary thyroid carcinoma (MTC) starting treatment with the tyrosine kinase inhibitor (TKI) vandetanib. However, this metric failed in overall survival (OS) prediction. In the present proof of concept study, we aimed to explore the prognostic value of intratumoral textural features (TF) as well as volumetric parameters (total lesion glycolysis, TLG) derived by pre-therapeutic \(^{18}\)F-FDG PET. Methods: Eighteen patients with progressive MTC underwent baseline \(^{18}\)F-FDG PET/CT prior to and 3 months after vandetanib initiation. By manual segmentation of the tumor burden at baseline and follow-up PET, intratumoral TF and TLG were computed. The ability of TLG, imaging-based TF, and clinical parameters (including age, tumor marker doubling times, prior therapies and RET (rearranged during transfection) mutational status) for prediction of both PFS and OS were evaluated. Results: The TF Complexity and the volumetric parameter TLG obtained at baseline prior to TKI initiation successfully differentiated between low- and high-risk patients. Complexity allocated 10/18 patients to the high-risk group with an OS of 3.3y (vs. low-risk group, OS=5.3y, 8/18, AUC=0.78, P=0.03). Baseline TLG designated 11/18 patients to the high-risk group (OS=3.5y vs. low-risk group, OS=5y, 7/18, AUC=0.83, P=0.005). The Hazard Ratio for cancer-related death was 6.1 for Complexity (TLG, 9.5). Among investigated clinical parameters, the age at initiation of TKI treatment reached significance for PFS prediction (P=0.02, OS, n.s.). Conclusions: The TF Complexity and the volumetric parameter TLG are both independent parameters for OS prediction.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerIlhanLehneretal.2018, author = {Werner, Rudolf A. and Ilhan, Harun and Lehner, Sebastian and Papp, L{\´a}szl{\´o} and Zs{\´o}t{\´e}r, Norbert and Schatka, Imke and Muegge, Dirk O. and Javadi, Mehrbod S. and Higuchi, Takahiro and Buck, Andreas K. and Bartenstein, Peter and Bengel, Frank and Essler, Markus and Lapa, Constantin and Bundschuh, Ralph A.}, title = {Pre-therapy Somatostatin-Receptor-Based Heterogeneity Predicts Overall Survival in Pancreatic Neuroendocrine Tumor Patients Undergoing Peptide Receptor Radionuclide Therapy}, series = {Molecular Imaging and Biology}, journal = {Molecular Imaging and Biology}, issn = {1536-1632}, doi = {10.1007/s11307-018-1252-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167168}, year = {2018}, abstract = {Purpose: Early identification of aggressive disease could improve decision-support in pancreatic neuroendocrine tumor (pNET) patients prior to peptide receptor radionuclide therapy (PRRT). The prognostic value of intratumoral textural features (TF) determined by baseline somatostatin receptor (SSTR)-PET before PRRT was analyzed. Procedures: 31 patients with G1/G2 pNET were enrolled (G2, n=23/31). Prior to PRRT with [\(^{177}\)Lu]DOTATATE (mean, 3.6 cycles), baseline SSTR-PET/CT was performed. By segmentation of 162 (median per patient, 5) metastases, intratumoral TF were computed. The impact of conventional PET parameters (SUV\(_{mean/max}\)), imaging-based TF as well as clinical parameters (Ki67, CgA) for prediction of both progression-free (PFS) and overall survival (OS) after PRRT was evaluated. Results: Within a median follow-up of 3.7y, tumor progression was detected in 21 patients (median, 1.5y) and 13/31 deceased (median, 1.9y). In ROC analysis, the TF Entropy, reflecting derangement on a voxel-by-voxel level, demonstrated predictive capability for OS (cutoff=6.7, AUC=0.71, p=0.02). Of note, increasing Entropy could predict a longer survival (>6.7, OS=2.5y, 17/31), whereas less voxel-based derangement portended inferior outcome (<6.7, OS=1.9y, 14/31). These findings were supported in a G2 subanalysis (>6.9, OS=2.8y, 9/23 vs. <6.9, OS=1.9y, 14/23). Kaplan-Meier analysis revealed a significant distinction between high- and low-risk groups using Entropy (n=31, p<0.05). For those patients below the ROC-derived threshold, the relative risk of death after PRRT was 2.73 (n=31, p=0.04). Ki67 was negatively associated with PFS (p=0.002); however, SUVmean/max failed in prognostication (n.s.). Conclusions: In contrast to conventional PET parameters, assessment of intratumoral heterogeneity demonstrated superior prognostic performance in pNET patients undergoing PRRT. This novel PET-based strategy of outcome prediction prior to PRRT might be useful for patient risk stratification.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerBundschuhBundschuhetal.2018, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Bundschuh, Lena and Javadi, Mehrbod S. and Higuchi, Takahiro and Weich, Alexander and Sheikhbahaei, Sara and Pienta, Kenneth J. and Buck, Andreas K. and Pomper, Martin G. and Gorin, Michael A. and Lapa, Constantin and Rowe, Steven P.}, title = {MI-RADS: Molecular Imaging Reporting and Data Systems - A Generalizable Framework for Targeted Radiotracers with Theranostic Implications}, series = {Annals of Nuclear Medicine}, journal = {Annals of Nuclear Medicine}, issn = {0914-7187}, doi = {10.1007/s12149-018-1291-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166995}, year = {2018}, abstract = {Both prostate-specific membrane antigen (PSMA)- and somatostatin receptor (SSTR)-targeted positron emission tomography (PET) imaging agents for staging and restaging of prostate carcinoma or neuroendocrine tumors, respectively, are seeing rapidly expanding use. In addition to diagnostic applications, both classes of radiotracers can be used to triage patients for theranostic endoradiotherapy. While interpreting PSMA- or SSTR-targeted PET/computed tomography (CT) scans, the reader has to be aware of certain pitfalls. Adding to the complexity of the interpretation of those imaging agents, both normal biodistribution, and also false-positive and -negative findings differ between PSMA- and SSTR-targeted PET radiotracers. Herein summarized under the umbrella term molecular imaging reporting and data systems (MI-RADS), two novel RADS classifications for PSMA- and SSTR-targeted PET imaging are described (PSMA- and SSTR-RADS). Both framework systems may contribute to increase the level of a reader's confidence and to navigate the imaging interpreter through indeterminate lesions, so that appropriate workup for equivocal findings can be pursued. Notably, PSMA- and SSTR-RADS are structured in a reciprocal fashion, i.e. if the reader is familiar with one system, the other system can readily be applied as well. In the present review we will discuss the most common pitfalls on PSMA- and SSTR-targeted PET/CT, briefly introduce PSMA- and SSTR-RADS, and define a future role of the umbrella framework MI-RADS compared to other harmonization systems.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @unpublished{WernerIlhanLehneretal.2018, author = {Werner, Rudolf A. and Ilhan, Harun and Lehner, Sebastian and Papp, L{\´a}szl{\´o} and Zs{\´o}t{\´e}r, Norbert and Schatka, Imke and Muegge, Dirk O. and Javadi, Mehrbod S. and Higuchi, Takahiro and Buck, Andreas K. and Bartenstein, Peter and Bengel, Frank and Essler, Markus and Lapa, Constantin and Bundschuh, Ralph A.}, title = {Pre-therapy Somatostatin-Receptor-Based Heterogeneity Predicts Overall Survival in Pancreatic Neuroendocrine Tumor Patients Undergoing Peptide Receptor Radionuclide Therapy}, series = {Molecular Imaging and Biology}, journal = {Molecular Imaging and Biology}, issn = {1536-1632}, doi = {https://doi.org/10.1007/s11307-018-1252-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164624}, year = {2018}, abstract = {Purpose: Early identification of aggressive disease could improve decision-support in pancreatic neuroendocrine tumor (pNET) patients prior to peptide receptor radionuclide therapy (PRRT). The prognostic value of intratumoral textural features (TF) determined by baseline somatostatin receptor (SSTR)-PET before PRRT was analyzed. Procedures: 31 patients with G1/G2 pNET were enrolled (G2, n=23/31). Prior to PRRT with [\(^{177}\)Lu]DOTATATE (mean, 3.6 cycles), baseline SSTR-PET/CT was performed. By segmentation of 162 (median per patient, 5) metastases, intratumoral TF were computed. The impact of conventional PET parameters (SUV\(_{mean/max}\)), imaging-based TF as well as clinical parameters (Ki67, CgA) for prediction of both progression-free (PFS) and overall survival (OS) after PRRT was evaluated. Results: Within a median follow-up of 3.7y, tumor progression was detected in 21 patients (median, 1.5y) and 13/31 deceased (median, 1.9y). In ROC analysis, the TF Entropy, reflecting derangement on a voxel-by-voxel level, demonstrated predictive capability for OS (cutoff=6.7, AUC=0.71, p=0.02). Of note, increasing Entropy could predict a longer survival (>6.7, OS=2.5y, 17/31), whereas less voxel-based derangement portended inferior outcome (<6.7, OS=1.9y, 14/31). These findings were supported in a G2 subanalysis (>6.9, OS=2.8y, 9/23 vs. <6.9, OS=1.9y, 14/23). Kaplan-Meier analysis revealed a significant distinction between high- and low-risk groups using Entropy (n=31, p<0.05). For those patients below the ROC-derived threshold, the relative risk of death after PRRT was 2.73 (n=31, p=0.04). Ki67 was negatively associated with PFS (p=0.002); however, SUVmean/max failed in prognostication (n.s.). Conclusions: In contrast to conventional PET parameters, assessment of intratumoral heterogeneity demonstrated superior prognostic performance in pNET patients undergoing PRRT. This novel PET-based strategy of outcome prediction prior to PRRT might be useful for patient risk stratification.}, subject = {Positronen-Emissions-Tomografie}, language = {en} }