@article{SiegmundZaitsevaWajant2023, author = {Siegmund, Daniela and Zaitseva, Olena and Wajant, Harald}, title = {Fn14 and TNFR2 as regulators of cytotoxic TNFR1 signaling}, series = {Frontiers in Cell and Developmental Biology}, volume = {11}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2023.1267837}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354304}, year = {2023}, abstract = {Tumor necrosis factor (TNF) receptor 1 (TNFR1), TNFR2 and fibroblast growth factor-inducible 14 (Fn14) belong to the TNF receptor superfamily (TNFRSF). From a structural point of view, TNFR1 is a prototypic death domain (DD)-containing receptor. In contrast to other prominent death receptors, such as CD95/Fas and the two TRAIL death receptors DR4 and DR5, however, liganded TNFR1 does not instruct the formation of a plasma membrane-associated death inducing signaling complex converting procaspase-8 into highly active mature heterotetrameric caspase-8 molecules. Instead, liganded TNFR1 recruits the DD-containing cytoplasmic signaling proteins TRADD and RIPK1 and empowers these proteins to trigger cell death signaling by cytosolic complexes after their release from the TNFR1 signaling complex. The activity and quality (apoptosis versus necroptosis) of TNF-induced cell death signaling is controlled by caspase-8, the caspase-8 regulatory FLIP proteins, TRAF2, RIPK1 and the RIPK1-ubiquitinating E3 ligases cIAP1 and cIAP2. TNFR2 and Fn14 efficiently recruit TRAF2 along with the TRAF2 binding partners cIAP1 and cIAP2 and can thereby limit the availability of these molecules for other TRAF2/cIAP1/2-utilizing proteins including TNFR1. Accordingly, at the cellular level engagement of TNFR2 or Fn14 inhibits TNFR1-induced RIPK1-mediated effects reaching from activation of the classical NFκB pathway to induction of apoptosis and necroptosis. In this review, we summarize the effects of TNFR2- and Fn14-mediated depletion of TRAF2 and the cIAP1/2 on TNFR1 signaling at the molecular level and discuss the consequences this has in vivo.}, language = {en} } @article{SchanbacherHermannsLorenzetal.2023, author = {Schanbacher, Constanze and Hermanns, Heike M. and Lorenz, Kristina and Wajant, Harald and Lang, Isabell}, title = {Complement 1q/tumor necrosis factor-related proteins (CTRPs): structure, receptors and signaling}, series = {Biomedicines}, volume = {11}, journal = {Biomedicines}, number = {2}, issn = {2227-9059}, doi = {10.3390/biomedicines11020559}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304136}, year = {2023}, abstract = {Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction.}, language = {en} } @article{LangZaitsevaWajant2022, author = {Lang, Isabell and Zaitseva, Olena and Wajant, Harald}, title = {FcγRs and their relevance for the activity of anti-CD40 antibodies}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {21}, issn = {1422-0067}, doi = {10.3390/ijms232112869}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290458}, year = {2022}, abstract = {Simple Summary Targeting of CD40 with antibodies attracts significant translational interest. While inhibitory CD40 targeting appears particularly attractive in the field of organ transplantation and for the treatment of autoimmune diseases, stimulatory CD40 targeting is the aim in tumor immunotherapy and vaccination against infectious pathogens. It turned out that lack of FcγR-binding is the crucial factor for the development of safe and well-tolerated inhibitory anti-CD40 antibodies. In striking contrast, FcγR-binding is of great importance for the CD40 stimulatory capacity of the majority of anti-CD40 antibodies. Typically, anti-CD40 antibodies only robustly stimulate CD40 when presented by FcγRs. However, FcγR-binding of anti-CD40 antibodies also triggers unwanted activities such as destruction of CD40 expressing cells by ADCC or ADCP. Based on a brief discussion of the mechanisms of CD40 activation, we give an overview of the ongoing activities in the development of anti-CD40 antibodies under special consideration of attempts aimed at the development of anti-CD40 antibodies with FcγR-independent agonism or FcγR subtype selectivity. Abstract Inhibitory targeting of the CD40L-CD40 system is a promising therapeutic option in the field of organ transplantation and is also attractive in the treatment of autoimmune diseases. After early complex results with neutralizing CD40L antibodies, it turned out that lack of Fcγ receptor (FcγR)-binding is the crucial factor for the development of safe inhibitory antibodies targeting CD40L or CD40. Indeed, in recent years, blocking CD40 antibodies not interacting with FcγRs, has proven to be well tolerated in clinical studies and has shown initial clinical efficacy. Stimulation of CD40 is also of considerable therapeutic interest, especially in cancer immunotherapy. CD40 can be robustly activated by genetically engineered variants of soluble CD40L but also by anti-CD40 antibodies. However, the development of CD40L-based agonists is biotechnologically and pharmacokinetically challenging, and anti-CD40 antibodies typically display only strong agonism in complex with FcγRs or upon secondary crosslinking. The latter, however, typically results in poorly developable mixtures of molecule species of varying stoichiometry and FcγR-binding by anti-CD40 antibodies can elicit unwanted side effects such as antibody-dependent cellular cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP) of CD40 expressing immune cells. Here, we summarize and compare strategies to overcome the unwanted target cell-destroying activity of anti-CD40-FcγR complexes, especially the use of FcγR type-specific mutants and the FcγR-independent cell surface anchoring of bispecific anti-CD40 fusion proteins. Especially, we discuss the therapeutic potential of these strategies in view of the emerging evidence for the dose-limiting activities of systemic CD40 engagement.}, language = {en} } @article{ZaitsevaHoffmannOttoetal.2022, author = {Zaitseva, Olena and Hoffmann, Annett and Otto, Christoph and Wajant, Harald}, title = {Targeting fibroblast growth factor (FGF)-inducible 14 (Fn14) for tumor therapy}, series = {Frontiers in Pharmacology}, volume = {13}, journal = {Frontiers in Pharmacology}, issn = {1663-9812}, doi = {10.3389/fphar.2022.935086}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290238}, year = {2022}, abstract = {Fibroblast growth factor-inducible 14 (Fn14) is a member of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF) and is activated by its ligand TNF-like weak inducer of apoptosis (TWEAK). The latter occurs as a homotrimeric molecule in a soluble and a membrane-bound form. Soluble TWEAK (sTWEAK) activates the weakly inflammatory alternative NF-κB pathway and sensitizes for TNF-induced cell death while membrane TWEAK (memTWEAK) triggers additionally robust activation of the classical NF-κB pathway and various MAP kinase cascades. Fn14 expression is limited in adult organisms but becomes strongly induced in non-hematopoietic cells by a variety of growth factors, cytokines and physical stressors (e.g., hypoxia, irradiation). Since all these Fn14-inducing factors are frequently also present in the tumor microenvironment, Fn14 is regularly found to be expressed by non-hematopoietic cells of the tumor microenvironment and most solid tumor cells. In general, there are three possibilities how the tumor-Fn14 linkage could be taken into consideration for tumor therapy. First, by exploitation of the cancer associated expression of Fn14 to direct cytotoxic activities (antibody-dependent cell-mediated cytotoxicity (ADCC), cytotoxic payloads, CAR T-cells) to the tumor, second by blockade of potential protumoral activities of the TWEAK/Fn14 system, and third, by stimulation of Fn14 which not only triggers proinflammtory activities but also sensitizes cells for apoptotic and necroptotic cell death. Based on a brief description of the biology of the TWEAK/Fn14 system and Fn14 signaling, we discuss the features of the most relevant Fn14-targeting biologicals and review the preclinical data obtained with these reagents. In particular, we address problems and limitations which became evident in the preclinical studies with Fn14-targeting biologicals and debate possibilities how they could be overcome.}, language = {en} } @article{MedlerKuckaWajant2022, author = {Medler, Juliane and Kucka, Kirstin and Wajant, Harald}, title = {Tumor necrosis factor receptor 2 (TNFR2): an emerging target in cancer therapy}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {11}, issn = {2072-6694}, doi = {10.3390/cancers14112603}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275143}, year = {2022}, abstract = {Despite the great success of TNF blockers in the treatment of autoimmune diseases and the identification of TNF as a factor that influences the development of tumors in many ways, the role of TNFR2 in tumor biology and its potential suitability as a therapeutic target in cancer therapy have long been underestimated. This has been fundamentally changed with the identification of TNFR2 as a regulatory T-cell (Treg)-stimulating factor and the general clinical breakthrough of immunotherapeutic approaches. However, considering TNFR2 as a sole immunosuppressive factor in the tumor microenvironment does not go far enough. TNFR2 can also co-stimulate CD8\(^+\) T-cells, sensitize some immune and tumor cells to the cytotoxic effects of TNFR1 and/or acts as an oncogene. In view of the wide range of cancer-associated TNFR2 activities, it is not surprising that both antagonists and agonists of TNFR2 are considered for tumor therapy and have indeed shown overwhelming anti-tumor activity in preclinical studies. Based on a brief summary of TNFR2 signaling and the immunoregulatory functions of TNFR2, we discuss here the main preclinical findings and insights gained with TNFR2 agonists and antagonists. In particular, we address the question of which TNFR2-associated molecular and cellular mechanisms underlie the observed anti-tumoral activities of TNFR2 agonists and antagonists.}, language = {en} } @article{VargasWagnerShaikhetal.2022, author = {Vargas, Juan Gamboa and Wagner, Jennifer and Shaikh, Haroon and Lang, Isabell and Medler, Juliane and Anany, Mohamed and Steinfatt, Tim and Mosca, Josefina Pe{\~n}a and Haack, Stephanie and Dahlhoff, Julia and B{\"u}ttner-Herold, Maike and Graf, Carolin and Viera, Estibaliz Arellano and Einsele, Hermann and Wajant, Harald and Beilhack, Andreas}, title = {A TNFR2-Specific TNF fusion protein with improved in vivo activity}, series = {Frontiers in Immunology}, volume = {13}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.888274}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277436}, year = {2022}, abstract = {Tumor necrosis factor (TNF) receptor-2 (TNFR2) has attracted considerable interest as a target for immunotherapy. Indeed, using oligomeric fusion proteins of single chain-encoded TNFR2-specific TNF mutants (scTNF80), expansion of regulatory T cells and therapeutic activity could be demonstrated in various autoinflammatory diseases, including graft-versus-host disease (GvHD), experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA). With the aim to improve the in vivo availability of TNFR2-specific TNF fusion proteins, we used here the neonatal Fc receptor (FcRn)-interacting IgG1 molecule as an oligomerizing building block and generated a new TNFR2 agonist with improved serum retention and superior in vivo activity. Methods Single-chain encoded murine TNF80 trimers (sc(mu)TNF80) were fused to the C-terminus of an in mice irrelevant IgG1 molecule carrying the N297A mutation which avoids/minimizes interaction with Fcγ-receptors (FcγRs). The fusion protein obtained (irrIgG1(N297A)-sc(mu)TNF80), termed NewSTAR2 (New selective TNF-based agonist of TNF receptor 2), was analyzed with respect to activity, productivity, serum retention and in vitro and in vivo activity. STAR2 (TNC-sc(mu)TNF80 or selective TNF-based agonist of TNF receptor 2), a well-established highly active nonameric TNFR2-specific variant, served as benchmark. NewSTAR2 was assessed in various in vitro and in vivo systems. Results STAR2 (TNC-sc(mu)TNF80) and NewSTAR2 (irrIgG1(N297A)-sc(mu)TNF80) revealed comparable in vitro activity. The novel domain architecture of NewSTAR2 significantly improved serum retention compared to STAR2, which correlated with efficient binding to FcRn. A single injection of NewSTAR2 enhanced regulatory T cell (Treg) suppressive activity and increased Treg numbers by > 300\% in vivo 5 days after treatment. Treg numbers remained as high as 200\% for about 10 days. Furthermore, a single in vivo treatment with NewSTAR2 upregulated the adenosine-regulating ectoenzyme CD39 and other activation markers on Tregs. TNFR2-stimulated Tregs proved to be more suppressive than unstimulated Tregs, reducing conventional T cell (Tcon) proliferation and expression of activation markers in vitro. Finally, singular preemptive NewSTAR2 administration five days before allogeneic hematopoietic cell transplantation (allo-HCT) protected mice from acute GvHD. Conclusions NewSTAR2 represents a next generation ligand-based TNFR2 agonist, which is efficiently produced, exhibits improved pharmacokinetic properties and high serum retention with superior in vivo activity exerting powerful protective effects against acute GvHD.}, language = {en} } @article{AidoZaitsevaWajantetal.2021, author = {Aido, Ahmed and Zaitseva, Olena and Wajant, Harald and Buzgo, Matej and Simaite, Aiva}, title = {Anti-Fn14 antibody-conjugated nanoparticles display membrane TWEAK-like agonism}, series = {Pharmaceutics}, volume = {13}, journal = {Pharmaceutics}, number = {7}, issn = {1999-4923}, doi = {10.3390/pharmaceutics13071072}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242710}, year = {2021}, abstract = {Conventional bivalent IgG antibodies targeting a subgroup of receptors of the TNF superfamily (TNFSF) including fibroblast growth factor-inducible 14 (anti-Fn14) typically display no or only very limited agonistic activity on their own and can only trigger receptor signaling by crosslinking or when bound to Fcγ receptors (FcγR). Both result in proximity of multiple antibody-bound TNFRSF receptor (TNFR) molecules, which enables engagement of TNFR-associated signaling pathways. Here, we have linked anti-Fn14 antibodies to gold nanoparticles to mimic the "activating" effect of plasma membrane-presented FcγR-anchored anti-Fn14 antibodies. We functionalized gold nanoparticles with poly-ethylene glycol (PEG) linkers and then coupled antibodies to the PEG surface of the nanoparticles. We found that Fn14 binding of the anti-Fn14 antibodies PDL192 and 5B6 is preserved upon attachment to the nanoparticles. More importantly, the gold nanoparticle-presented anti-Fn14 antibody molecules displayed strong agonistic activity. Our results suggest that conjugation of monoclonal anti-TNFR antibodies to gold nanoparticles can be exploited to uncover their latent agonism, e.g., for immunotherapeutic applications.}, language = {en} } @article{IsbernerKrausGrigoleitetal.2021, author = {Isberner, Nora and Kraus, Sabrina and Grigoleit, G{\"o}tz Ulrich and Aghai, Fatemeh and Kurlbaum, Max and Zimmermann, Sebastian and Klinker, Hartwig and Scherf-Clavel, Oliver}, title = {Ruxolitinib exposure in patients with acute and chronic graft versus host disease in routine clinical practice-a prospective single-center trial}, series = {Cancer Chemotherapy and Pharmacology}, volume = {88}, journal = {Cancer Chemotherapy and Pharmacology}, number = {6}, issn = {1432-0843}, doi = {10.1007/s00280-021-04351-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266476}, pages = {973-983}, year = {2021}, abstract = {Purpose Knowledge on Ruxolitinib exposure in patients with graft versus host disease (GvHD) is scarce. The purpose of this prospective study was to analyze Ruxolitinib concentrations of GvHD patients and to investigate effects of CYP3A4 and CYP2C9 inhibitors and other covariates as well as concentration-dependent effects. Methods 262 blood samples of 29 patients with acute or chronic GvHD who were administered Ruxolitinib during clinical routine were analyzed. A population pharmacokinetic model obtained from myelofibrosis patients was adapted to our population and was used to identify relevant pharmacokinetic properties and covariates on drug exposure. Relationships between Ruxolitinib exposure and adverse events were assessed. Results Median of individual mean trough serum concentrations was 39.9 ng/mL at 10 mg twice daily (IQR 27.1 ng/mL, range 5.6-99.8 ng/mL). Applying a population pharmacokinetic model revealed that concentrations in our cohort were significantly higher compared to myelofibrosis patients receiving the same daily dose (p < 0.001). Increased Ruxolitinib exposure was caused by a significant reduction in Ruxolitinib clearance by approximately 50\%. Additional comedication with at least one strong CYP3A4 or CYP2C9 inhibitor led to a further reduction by 15\% (p < 0.05). No other covariate affected pharmacokinetics significantly. Mean trough concentrations of patients requiring dose reduction related to adverse events were significantly elevated (p < 0.05). Conclusion Ruxolitinib exposure is increased in GvHD patients in comparison to myelofibrosis patients due to reduced clearance and comedication with CYP3A4 or CYP2C9 inhibitors. Elevated Ruxolitinib trough concentrations might be a surrogate for toxicity.}, language = {en} } @article{KuckaLangZhangetal.2021, author = {Kucka, Kirstin and Lang, Isabell and Zhang, Tengyu and Siegmund, Daniela and Medler, Juliane and Wajant, Harald}, title = {Membrane lymphotoxin-α\(_2\)β is a novel tumor necrosis factor (TNF) receptor 2 (TNFR2) agonist}, series = {Cell Death \& Disease}, volume = {12}, journal = {Cell Death \& Disease}, number = {4}, doi = {10.1038/s41419-021-03633-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260077}, pages = {360}, year = {2021}, abstract = {In the early 1990s, it has been described that LTα and LTβ form LTα\(_2\)β and LTαβ\(_2\) heterotrimers, which bind to TNFR1 and LTβR, respectively. Afterwards, the LTαβ\(_2\)-LTβR system has been intensively studied while the LTα\(_2\)β-TNFR1 interaction has been ignored to date, presumably due to the fact that at the time of identification of the LTα\(_2\)β-TNFR1 interaction one knew already two ligands for TNFR1, namely TNF and LTα. Here, we show that LTα\(_2\)β interacts not only with TNFR1 but also with TNFR2. We furthermore demonstrate that membrane-bound LTα\(_2\)β (memLTα\(_2\)β), despite its asymmetric structure, stimulates TNFR1 and TNFR2 signaling. Not surprising in view of its ability to interact with TNFR2, LTα\(_2\)β is inhibited by Etanercept, which is approved for the treatment of rheumatoid arthritis and also inhibits TNF and LTα.}, language = {en} } @article{ZieglerEhlisWeberetal.2021, author = {Ziegler, Georg C. and Ehlis, Ann-Christine and Weber, Heike and Vitale, Maria Rosaria and Z{\"o}ller, Johanna E. M. and Ku, Hsing-Ping and Schiele, Miriam A. and K{\"u}rbitz, Laura I. and Romanos, Marcel and Pauli, Paul and Kalisch, Raffael and Zwanzger, Peter and Domschke, Katharina and Fallgatter, Andreas J. and Reif, Andreas and Lesch, Klaus-Peter}, title = {A Common CDH13 Variant is Associated with Low Agreeableness and Neural Responses to Working Memory Tasks in ADHD}, series = {Genes}, volume = {12}, journal = {Genes}, number = {9}, issn = {2073-4425}, doi = {10.3390/genes12091356}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245220}, year = {2021}, abstract = {The cell—cell signaling gene CDH13 is associated with a wide spectrum of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism, and major depression. CDH13 regulates axonal outgrowth and synapse formation, substantiating its relevance for neurodevelopmental processes. Several studies support the influence of CDH13 on personality traits, behavior, and executive functions. However, evidence for functional effects of common gene variation in the CDH13 gene in humans is sparse. Therefore, we tested for association of a functional intronic CDH13 SNP rs2199430 with ADHD in a sample of 998 adult patients and 884 healthy controls. The Big Five personality traits were assessed by the NEO-PI-R questionnaire. Assuming that altered neural correlates of working memory and cognitive response inhibition show genotype-dependent alterations, task performance and electroencephalographic event-related potentials were measured by n-back and continuous performance (Go/NoGo) tasks. The rs2199430 genotype was not associated with adult ADHD on the categorical diagnosis level. However, rs2199430 was significantly associated with agreeableness, with minor G allele homozygotes scoring lower than A allele carriers. Whereas task performance was not affected by genotype, a significant heterosis effect limited to the ADHD group was identified for the n-back task. Heterozygotes (AG) exhibited significantly higher N200 amplitudes during both the 1-back and 2-back condition in the central electrode position Cz. Consequently, the common genetic variation of CDH13 is associated with personality traits and impacts neural processing during working memory tasks. Thus, CDH13 might contribute to symptomatic core dysfunctions of social and cognitive impairment in ADHD.}, language = {en} } @article{OthmanBekhitAnanyetal.2021, author = {Othman, Eman M. and Bekhit, Amany A. and Anany, Mohamed A. and Dandekar, Thomas and Ragab, Hanan M. and Wahid, Ahmed}, title = {Design, Synthesis, and Anticancer Screening for Repurposed Pyrazolo[3,4-d]pyrimidine Derivatives on Four Mammalian Cancer Cell Lines}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {10}, issn = {1420-3049}, doi = {10.3390/molecules26102961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239734}, year = {2021}, abstract = {The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells.}, language = {en} } @article{WeineltKarathanasisSmithetal.2021, author = {Weinelt, Nadine and Karathanasis, Christos and Smith, Sonja and Medler, Juliane and Malkusch, Sebastian and Fulda, Simone and Wajant, Harald and Heilemann, Mike and van Wijk, Sjoerd J. L.}, title = {Quantitative single-molecule imaging of TNFR1 reveals zafirlukast as antagonist of TNFR1 clustering and TNFα-induced NF-ĸB signaling}, series = {Journal of Leukocyte Biology}, volume = {109}, journal = {Journal of Leukocyte Biology}, number = {2}, doi = {10.1002/JLB.2AB0420-572RR}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215960}, pages = {363 -- 371}, year = {2021}, abstract = {TNFR1 is a crucial regulator of NF-ĸB-mediated proinflammatory cell survival responses and programmed cell death (PCD). Deregulation of TNFα- and TNFR1-controlled NF-ĸB signaling underlies major diseases, like cancer, inflammation, and autoimmune diseases. Therefore, although being routinely used, antagonists of TNFα might also affect TNFR2-mediated processes, so that alternative approaches to directly antagonize TNFR1 are beneficial. Here, we apply quantitative single-molecule localization microscopy (SMLM) of TNFR1 in physiologic cellular settings to validate and characterize TNFR1 inhibitory substances, exemplified by the recently described TNFR1 antagonist zafirlukast. Treatment of TNFR1-mEos2 reconstituted TNFR1/2 knockout mouse embryonic fibroblasts (MEFs) with zafirlukast inhibited both ligand-independent preligand assembly domain (PLAD)-mediated TNFR1 dimerization as well as TNFα-induced TNFR1 oligomerization. In addition, zafirlukast-mediated inhibition of TNFR1 clustering was accompanied by deregulation of acute and prolonged NF-ĸB signaling in reconstituted TNFR1-mEos2 MEFs and human cervical carcinoma cells. These findings reveal the necessity of PLAD-mediated, ligand-independent TNFR1 dimerization for NF-ĸB activation, highlight the PLAD as central regulator of TNFα-induced TNFR1 oligomerization, and demonstrate that TNFR1-mEos2 MEFs can be used to investigate TNFR1-antagonizing compounds employing single-molecule quantification and functional NF-ĸB assays at physiologic conditions.}, language = {en} } @article{SchmidFalterWeberetal.2017, author = {Schmid, Tobias and Falter, Lena and Weber, Sabine and M{\"u}ller, Nils and Molitor, Konstantin and Zeller, David and Weber-Steffens, Dorothea and Hehlgans, Thomas and Wajant, Harald and Mostb{\"o}ck, Sven and M{\"a}nnel, Daniela N.}, title = {Chronic inflammation increases the sensitivity of mouse Treg for TNFR2 costimulation}, series = {Frontiers in Immunology}, volume = {8}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2017.01471}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173259}, year = {2017}, abstract = {TNF receptor type 2 (TNFR2) has gained attention as a costimulatory receptor for T cells and as critical factor for the development of regulatory T cells (Treg) and myeloid suppressor cells. Using the TNFR2-specific agonist TNCscTNF80, direct effects of TNFR2 activation on myeloid cells and T cells were investigated in mice. \(In\) \(vitro\), TNCscTNF80 induced T cell proliferation in a costimulatory fashion, and also supported \(in\) \(vitro\) expansion of Treg cells. In addition, activation of TNFR2 retarded differentiation of bone marrow-derived immature myeloid cells in culture and reduced their suppressor function. \(In\) \(vivo\) application of TNCscTNF80-induced mild myelopoiesis in na{\"i}ve mice without affecting the immune cell composition. Already a single application expanded Treg cells and improved suppression of CD4 T cells in mice with chronic inflammation. By contrast, multiple applications of the TNFR2 agonist were required to expand Treg cells in na{\"i}ve mice. Improved suppression of T cell proliferation depended on expression of TNFR2 by T cells in mice repeatedly treated with TNCscTNF80, without a major contribution of TNFR2 on myeloid cells. Thus, TNFR2 activation on T cells in na{\"i}ve mice can lead to immune suppression \(in\) \(vivo\). These findings support the important role of TNFR2 for Treg cells in immune regulation.}, language = {en} } @article{HorvatVogelKampfetal.2020, author = {Horvat, Sonja and Vogel, Patrick and Kampf, Thomas and Brandl, Andreas and Alshamsan, Aws and Alhadlaq, Hisham A. and Ahamed, Maqusood and Albrecht, Krystyna and Behr, Volker C. and Beilhack, Andreas and Groll, J{\"u}rgen}, title = {Crosslinked Coating Improves the Signal-to-Noise Ratio of Iron Oxide Nanoparticles in Magnetic Particle Imaging (MPI)}, series = {ChemNanoMat}, volume = {6}, journal = {ChemNanoMat}, number = {5}, doi = {10.1002/cnma.202000009}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214718}, pages = {755 -- 758}, year = {2020}, abstract = {Magnetic particle imaging is an emerging tomographic method used for evaluation of the spatial distribution of iron-oxide nanoparticles. In this work, the effect of the polymer coating on the response of particles was studied. Particles with covalently crosslinked coating showed improved signal and image resolution.}, language = {en} } @article{KuckaWajant2021, author = {Kucka, Kirstin and Wajant, Harald}, title = {Receptor Oligomerization and Its Relevance for Signaling by Receptors of the Tumor Necrosis Factor Receptor Superfamily}, series = {Frontiers in Cell and Developmental Biology}, volume = {8}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2020.615141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227180}, year = {2021}, abstract = {With the exception of a few signaling incompetent decoy receptors, the receptors of the tumor necrosis factor receptor superfamily (TNFRSF) are signaling competent and engage in signaling pathways resulting in inflammation, proliferation, differentiation, and cell migration and also in cell death induction. TNFRSF receptors (TNFRs) become activated by ligands of the TNF superfamily (TNFSF). TNFSF ligands (TNFLs) occur as trimeric type II transmembrane proteins but often also as soluble ligand trimers released from the membrane-bound form by proteolysis. The signaling competent TNFRs are efficiently activated by the membrane-bound TNFLs. The latter recruit three TNFR molecules, but there is growing evidence that this is not sufficient to trigger all aspects of TNFR signaling; rather, the formed trimeric TNFL-TNFR complexes have to cluster secondarily in the cell-to-cell contact zone for full TNFR activation. With respect to their response to soluble ligand trimers, the signaling competent TNFRs can be subdivided into two groups. TNFRs of one group, designated as category I TNFRs, are robustly activated by soluble ligand trimers. The receptors of a second group (category II TNFRs), however, failed to become properly activated by soluble ligand trimers despite high affinity binding. The limited responsiveness of category II TNFRs to soluble TNFLs can be overcome by physical linkage of two or more soluble ligand trimers or, alternatively, by anchoring the soluble ligand molecules to the cell surface or extracellular matrix. This suggests that category II TNFRs have a limited ability to promote clustering of trimeric TNFL-TNFR complexes outside the context of cell-cell contacts. In this review, we will focus on three aspects on the relevance of receptor oligomerization for TNFR signaling: (i) the structural factors which promote clustering of free and liganded TNFRs, (ii) the signaling pathway specificity of the receptor oligomerization requirement, and (iii) the consequences for the design and development of TNFR agonists.}, language = {en} } @article{ChopraBiehlSteinfattetal.2016, author = {Chopra, Martin and Biehl, Marlene and Steinfatt, Tim and Brandl, Andreas and Kums, Juliane and Amich, Jorge and Vaeth, Martin and Kuen, Janina and Holtappels, Rafaela and Podlech, J{\"u}rgen and Mottok, Anja and Kraus, Sabrina and Jord{\´a}n-Garotte, Ana-Laura and B{\"a}uerlein, Carina A. and Brede, Christian and Ribechini, Eliana and Fick, Andrea and Seher, Axel and Polz, Johannes and Ottmueller, Katja J. and Baker, Jeannette and Nishikii, Hidekazu and Ritz, Miriam and Mattenheimer, Katharina and Schwinn, Stefanie and Winter, Thorsten and Sch{\"a}fer, Viktoria and Krappmann, Sven and Einsele, Hermann and M{\"u}ller, Thomas D. and Reddehase, Matthias J. and Lutz, Manfred B. and M{\"a}nnel, Daniela N. and Berberich-Siebelt, Friederike and Wajant, Harald and Beilhack, Andreas}, title = {Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion}, series = {Journal of Experimental Medicine}, volume = {213}, journal = {Journal of Experimental Medicine}, number = {9}, doi = {10.1084/jem.20151563}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187640}, pages = {1881-1900}, year = {2016}, abstract = {Donor CD4\(^+\)Foxp3\(^+\) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2-and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo.}, language = {en} } @article{Wajant2019, author = {Wajant, Harald}, title = {Molecular mode of action of TRAIL receptor agonists—common principles and their translational exploitation}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {7}, doi = {10.3390/cancers11070954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202416}, pages = {954}, year = {2019}, abstract = {Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application.}, language = {en} } @article{Wajant2019, author = {Wajant, Harald}, title = {Molecular mode of action of TRAIL receptor agonists—common principles and their translational exploitation}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {7}, doi = {10.3390/cancers11070954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201833}, pages = {954}, year = {2019}, abstract = {Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application.}, language = {en} } @article{KreckelAnanySiegmundetal.2019, author = {Kreckel, Jennifer and Anany, Mohammed A. and Siegmund, Daniela and Wajant, Harald}, title = {TRAF2 controls death receptor-induced caspase-8 processing and facilitates proinflammatory signaling}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, number = {2024}, doi = {10.3389/fimmu.2019.02024}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201822}, year = {2019}, abstract = {Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) knockout (KO) cells were generated to investigate the role of TRAF2 in signaling by TNFR1 and the CD95-type death receptors (DRs) TRAILR1/2 and CD95. To prevent negative selection effects arising from the increased cell death sensitivity of TRAF2-deficient cells, cell lines were used for the generation of the TRAF2 KO variants that were protected from DR-induced apoptosis downstream of caspase-8 activation. As already described in the literature, TRAF2 KO cells displayed enhanced constitutive alternative NFκB signaling and reduced TNFR1-induced activation of the classical NFκB pathway. There was furthermore a significant but only partial reduction in CD95-type DR-induced upregulation of the proinflammatory NFκB-regulated cytokine interleukin-8 (IL8), which could be reversed by reexpression of TRAF2. In contrast, expression of the TRAF2-related TRAF1 protein failed to functionally restore TRAF2 deficiency. TRAF2 deficiency resulted furthermore in enhanced procaspase-8 processing by DRs, but this surprisingly came along with a reduction in net caspase-8 activity. In sum, our data argue for (i) a non-obligate promoting function of TRAF2 in proinflammatory DR signaling and (ii) a yet unrecognized stabilizing effect of TRAF2 on caspase-8 activity.}, language = {en} } @article{WajantBeilhack2019, author = {Wajant, Harald and Beilhack, Andreas}, title = {Targeting regulatory T cells by addressing tumor necrosis factor and its receptors in allogeneic hematopoietic cell transplantation and cancer}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, number = {2040}, doi = {10.3389/fimmu.2019.02040}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201578}, year = {2019}, abstract = {An intricate network of molecular and cellular actors orchestrates the delicate balance between effector immune responses and immune tolerance. The pleiotropic cytokine tumor necrosis factor-alpha (TNF) proves as a pivotal protagonist promoting but also suppressing immune responses. These opposite actions are accomplished through specialist cell types responding to TNF via TNF receptors TNFR1 and TNFR2. Recent findings highlight the importance of TNFR2 as a key regulator of activated natural FoxP3+ regulatory T cells (Tregs) in inflammatory conditions, such as acute graft-vs.-host disease (GvHD) and the tumor microenvironment. Here we review recent advances in our understanding of TNFR2 signaling in T cells and discuss how these can reconcile seemingly conflicting observations when manipulating TNF and TNFRs. As TNFR2 emerges as a new and attractive target we furthermore pinpoint strategies and potential pitfalls for therapeutic targeting of TNFR2 for cancer treatment and immune tolerance after allogeneic hematopoietic cell transplantation.}, language = {en} }