@article{LibreSeisslerGuerreroetal.2021, author = {Libre, Camille and Seissler, Tanja and Guerrero, Santiago and Batisse, Julien and Verriez, C{\´e}dric and Stupfler, Benjamin and Gilmer, Orian and Cabrera-Rodriguez, Romina and Weber, Melanie M. and Valenzuela-Fernandez, Agustin and Cimarelli, Andrea and Etienne, Lucie and Marquet, Roland and Paillart, Jean-Christophe}, title = {A conserved uORF regulates APOBEC3G translation and is targeted by HIV-1 Vif protein to repress the antiviral factor}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {1}, issn = {2227-9059}, doi = {10.3390/biomedicines10010013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252147}, year = {2021}, abstract = {The HIV-1 Vif protein is essential for viral fitness and pathogenicity. Vif decreases expression of cellular restriction factors APOBEC3G (A3G), A3F, A3D and A3H, which inhibit HIV-1 replication by inducing hypermutation during reverse transcription. Vif counteracts A3G at several levels (transcription, translation, and protein degradation) that altogether reduce the levels of A3G in cells and prevent its incorporation into viral particles. How Vif affects A3G translation remains unclear. Here, we uncovered the importance of a short conserved uORF (upstream ORF) located within two critical stem-loop structures of the 5′ untranslated region (5′-UTR) of A3G mRNA for this process. A3G translation occurs through a combination of leaky scanning and translation re-initiation and the presence of an intact uORF decreases the extent of global A3G translation under normal conditions. Interestingly, the uORF is also absolutely required for Vif-mediated translation inhibition and redirection of A3G mRNA into stress granules. Overall, we discovered that A3G translation is regulated by a small uORF conserved in the human population and that Vif uses this specific feature to repress its translation.}, language = {en} } @article{HicklHeintzBuschartTrautweinSchultetal.2019, author = {Hickl, Oskar and Heintz-Buschart, Anna and Trautwein-Schult, Anke and Hercog, Rajna and Bork, Peer and Wilmes, Paul and Becher, D{\"o}rte}, title = {Sample preservation and storage significantly impact taxonomic and functional profiles in metaproteomics studies of the human gut microbiome}, series = {Microorganisms}, volume = {7}, journal = {Microorganisms}, number = {9}, issn = {2076-2607}, doi = {10.3390/microorganisms7090367}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195976}, year = {2019}, abstract = {With the technological advances of the last decade, it is now feasible to analyze microbiome samples, such as human stool specimens, using multi-omic techniques. Given the inherent sample complexity, there exists a need for sample methods which preserve as much information as possible about the biological system at the time of sampling. Here, we analyzed human stool samples preserved and stored using different methods, applying metagenomics as well as metaproteomics. Our results demonstrate that sample preservation and storage have a significant effect on the taxonomic composition of identified proteins. The overall identification rates, as well as the proportion of proteins from Actinobacteria were much higher when samples were flash frozen. Preservation in RNAlater overall led to fewer protein identifications and a considerable increase in the share of Bacteroidetes, as well as Proteobacteria. Additionally, a decrease in the share of metabolism-related proteins and an increase of the relative amount of proteins involved in the processing of genetic information was observed for RNAlater-stored samples. This suggests that great care should be taken in choosing methods for the preservation and storage of microbiome samples, as well as in comparing the results of analyses using different sampling and storage methods. Flash freezing and subsequent storage at -80 °C should be chosen wherever possible.}, language = {en} }