@article{NellBurgkartGradletal.2011, author = {Nell, Manuel and Burgkart, Rainer H. and Gradl, Guntmar and von Eisenhart-Rothe, R{\"u}diger and Schaeffeler, Christoph and Trappe, Dennis and Prazeres da Costa, Clarissa and Gradinger, Reiner and Kirchhoff, Chlodwig}, title = {Primary extrahepatic alveolar echinococcosis of the lumbar spine and the psoas muscle}, series = {Annals of Clinical Microbiology and Antimicrobials}, volume = {10}, journal = {Annals of Clinical Microbiology and Antimicrobials}, number = {13}, doi = {10.1186/1476-0711-10-13}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141796}, pages = {1-6}, year = {2011}, abstract = {Alveolar echinococcosis (AE) of human being caused by Echinococcus multilocularis is a rare but important zoonosis especially in tempered zones of middle Europe and Northern America with endemic character in many countries. Due to the long incubation period, various clinical manifestations, critical prognosis, and outcome AE presents a serious and severe disease. The primary focus of infection is usually the liver. Although secondary affection of visceral organs is possible extrahepatic AE is highly uncommon. Moreover, the involvement of bone and muscle presents with an even lower incidence. In the literature numerous cases on hepatic AE have been reported. However, extrahepatic AE involving bones and/or muscles was described very rarely. We report a case of an 80-year-old man with primary extrahepatic alveolar Echinococcosis of the lumbar spine and the psoas muscle. The etiology, diagnosis, differential diagnoses, treatment options and outcome of this rare disease are discussed in context with the current literature.}, language = {en} } @article{KoziolRadioSmircichetal.2015, author = {Koziol, Uriel and Radio, Santiago and Smircich, Pablo and Zarowiecki, Magdalena and Fern{\´a}ndez, Cecilia and Brehm, Klaus}, title = {A novel terminal-repeat retrotransposon in miniature (TRIM) is massively expressed in Echinococcus multilocularis stem cells}, series = {Genome Biology and Evolution}, volume = {7}, journal = {Genome Biology and Evolution}, number = {8}, doi = {10.1093/gbe/evv126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148306}, pages = {2136-2153}, year = {2015}, abstract = {Taeniid cestodes (including the human parasites Echinococcus spp. and Taenia solium) have very few mobile genetic elements (MGEs) in their genome, despite lacking a canonical PIWI pathway. The MGEs of these parasites are virtually unexplored, and nothing is known about their expression and silencing. In this work, we report the discovery of a novel family of small nonautonomous long terminal repeat retrotransposons (also known as terminal-repeat retrotransposons in miniature, TRIMs) which we have named ta-TRIM (taeniid TRIM). ta-TRIMs are only the second family of TRIM elements discovered in animals, and are likely the result of convergent reductive evolution in different taxonomic groups. These elements originated at the base of the taeniid tree and have expanded during taeniid diversification, including after the divergence of closely related species such as Echinococcus multilocularis and Echinococcus granulosus. They are massively expressed in larval stages, from a small proportion of full-length copies and from isolated terminal repeats that show transcriptional read-through into downstream regions, generating novel noncoding RNAs and transcriptional fusions to coding genes. In E. multilocularis, ta-TRIMs are specifically expressed in the germinative cells (the somatic stem cells) during asexual reproduction of metacestode larvae. This would provide a developmental mechanism for insertion of ta-TRIMs into cells that will eventually generate the adult germ line. Future studies of active and inactive ta-TRIM elements could give the first clues on MGE silencing mechanisms in cestodes.}, language = {en} } @article{MoremiClausMshana2016, author = {Moremi, Nyambura and Claus, Heike and Mshana, Stephen E.}, title = {Antimicrobial resistance pattern: a report of microbiological cultures at a tertiary hospital in Tanzania}, series = {BMC Infectious Diseases}, volume = {16}, journal = {BMC Infectious Diseases}, number = {756}, doi = {10.1186/s12879-016-2082-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161185}, year = {2016}, abstract = {Background Antimicrobial resistance has been declared by the World Health Organization as a threat to the public health. The aim of this study was to analyze antimicrobial resistance patterns of the common pathogens occurring at the Bugando Medical Centre (BMC), Mwanza, Tanzania to provide data for antimicrobial stewardship programmes. Methods A total of 3330 microbiological culture results scripts representing non-repetitive specimens reported between June 2013 and May 2015 were retrieved and analyzed for pathogens and their susceptibility patterns using STATA-11 software. Results Out of 3330 specimens, 439 (13.2\%) had positive culture. Staphylococcus aureus (n = 100; 22.8\%), Klebsiella pneumoniae (n = 65; 14.8\%) and Escherichia coli (n = 41; 9.3\%) were the most frequently isolated bacteria. Of 78 Staphylococcus aureus tested, 27 (34.6\%) were found to be methicillin resistant Staphylococcus aureus (MRSA). Rates of resistance of Klebsiella pneumoniae and Escherichia coli isolates to third generation cephalosporins were 38.5\% (25/65) and 29.3\% (12/41) respectively. Staphylococcus aureus and Klesbiella pneumoniae were commonly isolated from bloodstream infections while Escherichia coli and Pseudomonas aeruginosa were the predominant isolates from urinary tract and wounds infections respectively. Of 23 Salmonella species isolated, 22 (95\%) were recovered from the blood. Nine of the 23 Salmonella species isolates (39\%) were found to be resistant to third generation cephalosporins. The resistance rate of gram-negative bacteria to third generation cephalosporins increased from 26.5\% in 2014 to 57.9\% in 2015 (p = 0.004) while the rate of MRSA decreased from 41.2\% in 2013 to 9.5\% in 2015 (p = 0.016). Multidrug-resistant gram-negative isolates were commonly isolated from Intensive Care Units and it was noted that, the majority of invasive infections were due to gram-negative bacteria. Conclusion There is an increase in proportion of gram-negative isolates resistant to third generation cephalosporins. The diversity of potential pathogens resistant to commonly prescribed antibiotics underscores the importance of sustained and standardized antimicrobial resistance surveillance and antibiotic stewardship programmes in developing countries.}, language = {en} } @article{HubertPawlikClausetal.2012, author = {Hubert, Kerstin and Pawlik, Marie-Christin and Claus, Heike and Jarva, Hanna and Meri, Seppo and Vogel, Ulrich}, title = {Opc Expression, LPS Immunotype Switch and Pilin Conversion Contribute to Serum Resistance of Unencapsulated Meningococci}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0045132}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135421}, pages = {e45132}, year = {2012}, abstract = {Neisseria meningitidis employs polysaccharides and outer membrane proteins to cope with human serum complement attack. To screen for factors influencing serum resistance, an assay was developed based on a colorimetric serum bactericidal assay. The screening used a genetically modified sequence type (ST)-41/44 clonal complex (cc) strain lacking LPS sialylation, polysaccharide capsule, the factor H binding protein (fHbp) and MutS, a protein of the DNA repair mechanism. After killing of >99.9\% of the bacterial cells by serum treatment, the colorimetric assay was used to screen 1000 colonies, of which 35 showed enhanced serum resistance. Three mutant classes were identified. In the first class of mutants, enhanced expression of Opc was identified. Opc expression was associated with vitronectin binding and reduced membrane attack complex deposition confirming recent observations. Lipopolysaccharide (LPS) immunotype switch from immunotype L3 to L8/L1 by lgtA and lgtC phase variation represented the second class. Isogenic mutant analysis demonstrated that in ST-41/44 cc strains the L8/L1 immunotype was more serum resistant than the L3 immunotype. Consecutive analysis revealed that the immunotypes L8 and L1 were frequently observed in ST-41/44 cc isolates from both carriage and disease. Immunotype switch to L8/L1 is therefore suggested to contribute to the adaptive capacity of this meningococcal lineage. The third mutant class displayed a pilE allelic exchange associated with enhanced autoaggregation. The mutation of the C terminal hypervariable region D of PilE included a residue previously associated with increased pilus bundle formation. We suggest that autoaggregation reduced the surface area accessible to serum complement and protected from killing. The study highlights the ability of meningococci to adapt to environmental stress by phase variation and intrachromosomal recombination affecting subcapsular antigens.}, language = {en} } @article{BarthHerrmannTappeetal.2012, author = {Barth, Thomas F. E. and Herrmann, Tobias S. and Tappe, Dennis and Stark, Lorenz and Gr{\"u}ner, Beate and Buttenschoen, Klaus and Hillenbrand, Andreas and Juchems, Markus and Henne-Bruns, Doris and Kern, Petra and Seitz, Hanns M. and M{\"o}ller, Peter and Rausch, Robert L. and Kern, Peter and Deplazes, Peter}, title = {Sensitive and Specific Immunohistochemical Diagnosis of Human Alveolar Echinococcosis with the Monoclonal Antibody Em2G11}, series = {PLoS Neglected Tropical Diseases}, volume = {6}, journal = {PLoS Neglected Tropical Diseases}, number = {10}, doi = {10.1371/journal.pntd.0001877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135371}, pages = {e1877}, year = {2012}, abstract = {Background: Alveolar echinococcosis (AE) is caused by the metacestode stage of Echinococcus multilocularis. Differential diagnosis with cystic echinococcosis (CE) caused by E. granulosus and AE is challenging. We aimed at improving diagnosis of AE on paraffin sections of infected human tissue by immunohistochemical testing of a specific antibody. Methodology/Principal Findings: We have analysed 96 paraffin archived specimens, including 6 cutting needle biopsies and 3 fine needle aspirates, from patients with suspected AE or CE with the monoclonal antibody (mAb) Em2G11 specific for the Em2 antigen of E. multilocularis metacestodes. In human tissue, staining with mAb Em2G11 is highly specific for E. multilocularis metacestodes while no staining is detected in CE lesions. In addition, the antibody detects small particles of E. multilocularis (spems) of less than 1 mm outside the main lesion in necrotic tissue, liver sinusoids and lymphatic tissue most probably caused by shedding of parasitic material. The conventional histological diagnosis based on haematoxylin and eosin and PAS stainings were in accordance with the immunohistological diagnosis using mAb Em2G11 in 90 of 96 samples. In 6 samples conventional subtype diagnosis of echinococcosis had to be adjusted when revised by immunohistology with mAb Em2G11. Conclusions/Significance: Immunohistochemistry with the mAb Em2G11 is a new, highly specific and sensitive diagnostic tool for AE. The staining of small particles of E. multilocularis (spems) outside the main lesion including immunocompetent tissue, such as lymph nodes, suggests a systemic effect on the host.}, language = {en} } @article{KlughammerDittrichBlometal.2017, author = {Klughammer, Johanna and Dittrich, Marcus and Blom, Jochen and Mitesser, Vera and Vogel, Ulrich and Frosch, Matthias and Goesmann, Alexander and M{\"u}ller, Tobias and Schoen, Christoph}, title = {Comparative genome sequencing reveals within-host genetic changes in Neisseria meningitidis during invasive disease}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0169892}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159547}, pages = {e0169892}, year = {2017}, abstract = {Some members of the physiological human microbiome occasionally cause life-threatening disease even in immunocompetent individuals. A prime example of such a commensal pathogen is Neisseria meningitidis, which normally resides in the human nasopharynx but is also a leading cause of sepsis and epidemic meningitis. Using N. meningitidis as model organism, we tested the hypothesis that virulence of commensal pathogens is a consequence of within host evolution and selection of invasive variants due to mutations at contingency genes, a mechanism called phase variation. In line with the hypothesis that phase variation evolved as an adaptation to colonize diverse hosts, computational comparisons of all 27 to date completely sequenced and annotated meningococcal genomes retrieved from public databases showed that contingency genes are indeed enriched for genes involved in host interactions. To assess within-host genetic changes in meningococci, we further used ultra-deep whole-genome sequencing of throat-blood strain pairs isolated from four patients suffering from invasive meningococcal disease. We detected up to three mutations per strain pair, affecting predominantly contingency genes involved in type IV pilus biogenesis. However, there was not a single (set) of mutation(s) that could invariably be found in all four pairs of strains. Phenotypic assays further showed that these genetic changes were generally not associated with increased serum resistance, higher fitness in human blood ex vivo or differences in the interaction with human epithelial and endothelial cells in vitro. In conclusion, we hypothesize that virulence of meningococci results from accidental emergence of invasive variants during carriage and without within host evolution of invasive phenotypes during disease progression in vivo.}, language = {en} } @article{BecamWalterBurgertetal.2017, author = {Becam, J{\´e}r{\^o}me and Walter, Tim and Burgert, Anne and Schlegel, Jan and Sauer, Markus and Seibel, J{\"u}rgen and Schubert-Unkmeir, Alexandra}, title = {Antibacterial activity of ceramide and ceramide analogs against pathogenic Neisseria}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-18071-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159367}, pages = {17627}, year = {2017}, abstract = {Certain fatty acids and sphingoid bases found at mucosal surfaces are known to have antibacterial activity and are thought to play a more direct role in innate immunity against bacterial infections. Herein, we analysed the antibacterial activity of sphingolipids, including the sphingoid base sphingosine as well as short-chain C\(_{6}\) and long-chain C\(_{16}\)-ceramides and azido-functionalized ceramide analogs against pathogenic Neisseriae. Determination of the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) demonstrated that short-chain ceramides and a ω-azido-functionalized C\(_{6}\)-ceramide were active against Neisseria meningitidis and N. gonorrhoeae, whereas they were inactive against Escherichia coli and Staphylococcus aureus. Kinetic assays showed that killing of N. meningitidis occurred within 2 h with ω-azido-C\(_{6}\)-ceramide at 1 X the MIC. Of note, at a bactericidal concentration, ω-azido-C\(_{6}\)-ceramide had no significant toxic effect on host cells. Moreover, lipid uptake and localization was studied by flow cytometry and confocal laser scanning microscopy (CLSM) and revealed a rapid uptake by bacteria within 5 min. CLSM and super-resolution fluorescence imaging by direct stochastic optical reconstruction microscopy demonstrated homogeneous distribution of ceramide analogs in the bacterial membrane. Taken together, these data demonstrate the potent bactericidal activity of sphingosine and synthetic short-chain ceramide analogs against pathogenic Neisseriae.}, language = {en} } @article{KohlmorgenEliasSchoen2017, author = {Kohlmorgen, Britta and Elias, Johannes and Schoen, Christoph}, title = {Improved performance of the artus Mycobacterium tuberculosis RG PCR kit in a low incidence setting: a retrospective monocentric study}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {14127}, doi = {10.1038/s41598-017-14367-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159248}, year = {2017}, abstract = {Tuberculosis (TB) and the spread of Mycobacterium tuberculosis complex (MTBC) strains resistant against rifampin (RIF) and isoniazid (INH) pose a serious threat to global health. However, rapid and reliable MTBC detection along with RIF/INH susceptibility testing are challenging in low prevalence countries due to the higher rate of false positives. Here, we provide the first performance data for the artus MTBC PCR assay in a low prevalence setting. We analyze 1323 respiratory and 311 non-respiratory samples with the artus MTBC PCR assay as well as by mycobacterial culture and microscopy. We propose retesting of specimens in duplicate and consideration of a determined cycle-threshold value cut-off greater than 34, as this significantly increases accuracy, specificity, and negative predictive value without affecting sensitivity. Furthermore, we tested fourteen MTBC positive samples with the GenoType MTBDRplus test and demonstrate that using an identical DNA extraction protocol for both assays does not impair downstream genotypic testing for RIF and INH susceptibility. In conclusion, our procedure optimizes the use of the artus MTB assay with workload efficient methods in a low incidence setting. Combining the modified artus MTB with the GenoType MTBDRplus assays allows rapid and accurate detection of MTBC and RIF/INH resistance.}, language = {en} } @article{DickKraussHillenkampetal.2017, author = {Dick, Julia and Krauß, Patrizia and Hillenkamp, Jost and Kohlmorgen, Britta and Schoen, Christoph}, title = {Postoperative Tropheryma whipplei endophthalmitis - a case report highlighting the additive value of molecular testing}, series = {JMM Case Reports}, volume = {4}, journal = {JMM Case Reports}, doi = {10.1099/jmmcr.0.005124}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158823}, pages = {e005124}, year = {2017}, abstract = {Introduction. Tropheryma whipplei is the causative agent of Whipple's disease. Gastrointestinal and lymphatic tissues are affected in the majority of cases, resulting in diarrhoea, malabsorption and fever. Here, we report a rare case of ocular manifestation in a patient lacking the typical Whipple symptoms. Case presentation. A 74-year-old Caucasian female presented with blurred vision in the right eye over a period of 1-2 months, accompanied by stinging pain and conjunctival hyperaemia for the last 2 days. Upon admission, visual acuity was hand motion in the affected eye. Ophthalmological examination showed typical signs of intraocular inflammation. Diagnostic and therapeutic pars plana vitrectomy including vitreous biopsy and intravitreal instillation of vancomycin and amikacin was performed within hours of initial presentation. Both microscopic analysis and microbial cultures of the vitreous biopsy remained negative for bacteria and fungi. The postoperative antibiotic regime included intravenous administration of ceftriaxone in combination with topical tobramycin and ofloxacin. Due to the empirical therapy the inflammation ceased and the patient was discharged after 5 days with cefpodoxime orally and local antibiotic and steroidal therapy. Meanwhile, the vitreous body had undergone testing by PCR for the eubacterial 16S rRNA gene, which was found to be positive. Analysis of the PCR product revealed a specific sequence of T. whipplei. Conclusion. In our patient, endophthalmitis was the first and only symptom of Morbus Whipple, while most patients with Whipple's disease suffer from severe gastrointestinal symptoms. 16S rDNA PCR should be considered for any intraocular infection when microscopy and standard culture methods remain negative.}, language = {en} } @article{MoremiClausVogeletal.2017, author = {Moremi, Nyambura and Claus, Heike and Vogel, Ulrich and Mshana, Stephen E.}, title = {Surveillance of surgical site infections by Pseudomonas aeruginosa and strain characterization in Tanzanian hospitals does not provide proof for a role of hospital water plumbing systems in transmission}, series = {Antimicrobial Resistance and Infection Control}, volume = {6}, journal = {Antimicrobial Resistance and Infection Control}, number = {56}, doi = {10.1186/s13756-017-0216-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158168}, year = {2017}, abstract = {Background The role of hospital water systems in the development of Pseudomonas aeruginosa (P. aeruginosa) surgical site infections (SSIs) in low-income countries is barely studied. This study characterized P. aeruginosa isolates from patients and water in order to establish possible epidemiological links. Methods: Between December 2014 and September 2015, rectal and wound swabs, and water samples were collected in the frame of active surveillance for SSIs in the two Tanzanian hospitals. Typing of P. aeruginosa was done by multi-locus sequence typing. Results: Of 930 enrolled patients, 536 were followed up, of whom 78 (14.6\%, 95\% CI; 11.6-17.5) developed SSIs. P. aeruginosa was found in eight (14\%) of 57 investigated wounds. Of the 43 water sampling points, 29 were positive for P. aeruginosa. However, epidemiological links to wound infections were not confirmed. The P. aeruginosa carriage rate on admission was 0.9\% (8/930). Of the 363 patients re-screened upon discharge, four (1.1\%) possibly acquired P. aeruginosa during hospitalization. Wound infections of the three of the eight P. aeruginosa SSIs were caused by a strain of the same sequence type (ST) as the one from intestinal carriage. Isolates from patients were more resistant to antibiotics than water isolates. Conclusions: The P. aeruginosa SSI rate was low. There was no evidence for transmission from tap water. Not all P. aeruginosa SSI were proven to be endogenous, pointing to other routes of transmission.}, language = {en} } @article{AmpattuHagmannLiangetal.2017, author = {Ampattu, Biju Joseph and Hagmann, Laura and Liang, Chunguang and Dittrich, Marcus and Schl{\"u}ter, Andreas and Blom, Jochen and Krol, Elizaveta and Goesmann, Alexander and Becker, Anke and Dandekar, Thomas and M{\"u}ller, Tobias and Schoen, Christoph}, title = {Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence}, series = {BMC Genomics}, volume = {18}, journal = {BMC Genomics}, number = {282}, doi = {10.1186/s12864-017-3616-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157534}, year = {2017}, abstract = {Background: Commensal bacteria like Neisseria meningitidis sometimes cause serious disease. However, genomic comparison of hyperinvasive and apathogenic lineages did not reveal unambiguous hints towards indispensable virulence factors. Here, in a systems biological approach we compared gene expression of the invasive strain MC58 and the carriage strain α522 under different ex vivo conditions mimicking commensal and virulence compartments to assess the strain-specific impact of gene regulation on meningococcal virulence. Results: Despite indistinguishable ex vivo phenotypes, both strains differed in the expression of over 500 genes under infection mimicking conditions. These differences comprised in particular metabolic and information processing genes as well as genes known to be involved in host-damage such as the nitrite reductase and numerous LOS biosynthesis genes. A model based analysis of the transcriptomic differences in human blood suggested ensuing metabolic flux differences in energy, glutamine and cysteine metabolic pathways along with differences in the activation of the stringent response in both strains. In support of the computational findings, experimental analyses revealed differences in cysteine and glutamine auxotrophy in both strains as well as a strain and condition dependent essentiality of the (p)ppGpp synthetase gene relA and of a short non-coding AT-rich repeat element in its promoter region. Conclusions: Our data suggest that meningococcal virulence is linked to transcriptional buffering of cryptic genetic variation in metabolic genes including global stress responses. They further highlight the role of regulatory elements for bacterial virulence and the limitations of model strain approaches when studying such genetically diverse species as N. meningitidis.}, language = {en} } @article{MoremiMshanaKamugishaetal.2012, author = {Moremi, Nyambura and Mshana, Stephen E. and Kamugisha, Erasmus and Kataraihya, Johannes B. and Tappe, Dennis and Vogel, Ulrich and Lyamuya, Eligius F. and Claus, Heike}, title = {Predominance of methicillin resistant Staphylococcus aureus-ST88 and new ST1797 causing wound infection and abscesses}, series = {Journal of Infection in Developing Countries}, volume = {6}, journal = {Journal of Infection in Developing Countries}, number = {8}, doi = {10.3855/jidc.2093}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134746}, pages = {620-625}, year = {2012}, abstract = {Introduction: Although there has been a worldwide emergence and spread of methicillin-resistant Staphylococcus aureus (MRSA), little is known about the molecular epidemiology of MRSA in Tanzania. Methodology: In this study, we characterized MRSA strains isolated from clinical specimens at the Bugando Medical Centre, Tanzania, between January and December 2008. Of 160 S. aureus isolates from 600 clinical specimens, 24 (15\%) were found to be MRSA. Besides molecular screening for the Panton Valentine leukocidin (PVL) genes by PCR, MRSA strains were further characterized by Multi-Locus Sequence Typing (MLST) and spa typing. Results: Despite considerable genetic diversity, the spa types t690 (29.1\%) and t7231 (41.6\%), as well as the sequence types (ST) 88 (54.2\%) and 1797 (29.1\%), were dominant among clinical isolates. The PVL genes were detected in 4 isolates; of these, 3 were found in ST 88 and one in ST1820. Resistance to erythromycin, clindamicin, gentamicin, tetracycline and co-trimoxazole was found in 45.8\%, 62.5\%, 41.6\%, 45.8\% and 50\% of the strains, respectively. Conclusion: We present the first thorough typing of MRSA at a Tanzanian hospital. Despite considerable genetic diversity, ST88 was dominant among clinical isolates at the Bugando Medical Centre. Active and standardized surveillance of nosocomial MRSA infection should be conducted in the future to analyse the infection and transmission rates and implement effective control measures.}, language = {en} } @article{KoziolJareroOlsonetal.2016, author = {Koziol, Uriel and Jarero, Francesca and Olson, Peter D. and Brehm, Klaus}, title = {Comparative analysis of Wnt expression identifies a highly conserved developmental transition in flatworms}, series = {BMC Biology}, volume = {14}, journal = {BMC Biology}, number = {10}, doi = {10.1186/s12915-016-0233-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146566}, year = {2016}, abstract = {Background Early developmental patterns of flatworms are extremely diverse and difficult to compare between distant groups. In parasitic flatworms, such as tapeworms, this is confounded by highly derived life cycles involving indirect development, and even the true orientation of the tapeworm antero-posterior (AP) axis has been a matter of controversy. In planarians, and metazoans generally, the AP axis is specified by the canonical Wnt pathway, and we hypothesized that it could also underpin axial formation during larval metamorphosis in tapeworms. Results By comparative gene expression analysis of Wnt components and conserved AP markers in the tapeworms Echinococcus multilocularis and Hymenolepis microstoma, we found remarkable similarities between the early stages of larval metamorphosis in tapeworms and late embryonic and adult development in planarians. We demonstrate posterior expression of specific Wnt factors during larval metamorphosis and show that scolex formation is preceded by localized expression of Wnt inhibitors. In the highly derived larval form of E. multilocularis, which proliferates asexually within the mammalian host, we found ubiquitous expression of posterior Wnt factors combined with localized expression of Wnt inhibitors that correlates with the asexual budding of scoleces. As in planarians, muscle cells are shown to be a source of secreted Wnt ligands, providing an explanation for the retention of a muscle layer in the immotile E. multilocularis larva. Conclusions The strong conservation of gene expression between larval metamorphosis in tapeworms and late embryonic development in planarians suggests, for the first time, a homologous developmental period across this diverse phylum. We postulate these to represent the phylotypic stages of these flatworm groups. Our results support the classical notion that the scolex is the true anterior end of tapeworms. Furthermore, the up-regulation of Wnt inhibitors during the specification of multiple anterior poles suggests a mechanism for the unique asexual reproduction of E. multilocularis larvae.}, language = {en} } @phdthesis{HagmanngebKischkies2016, author = {Hagmann [geb. Kischkies], Laura Violetta}, title = {Stringent response regulation and its impact on ex vivo survival in the commensal pathogen \(Neisseria\) \(meningitidis\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144352}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Neisseria meningitidis is a commensal bacterium which sometimes causes serious disease in humans. Recent studies in numerous human pathogenic bacteria have shown that the stringent response contributes to bacterial virulence. Therefore, this study analyzed the regulation of the stringent response in meningococci and in particular of RelA as well as its contribution to ex vivo fitness in a strain- and condition- dependent manner by using the carriage strain α522 and the hyperinvasive strain MC58 in different in vitro and ex vivo conditions. Growth experiments revealed that both wild-type strains were almost indistinguishable in their ex vivo phenotypes. However, quantitative real time PCR (qRT-PCR) found differences in the gene expression of relA between both strains. Furthermore, in contrast to the MC58 RelA mutant strain α522 deficient in RelA was unable to survive in human whole blood, although both strains showed the same ex vivo phenotypes in saliva and cerebrospinal fluid. Moreover, strain α522 was depended on a short non-coding AT-rich repeat element (ATRrelA) in the promoter region of relA to survive in human blood. Furthermore, cell culture experiments with human epithelial cells revealed that in both strains the deletion of relA resulted in a significantly decreased invasion rate while not significantly affecting adhesion. In order to better understand the conditional lethality of the relA deletion, computational and experimental analyses were carried out to unravel differences in amino acid biosynthetic pathways between both strains. Whereas strain MC58 is able to synthesize all 20 amino acids, strain α522 has an auxotrophy for cysteine and glutamine. In addition, the in vitro growth experiments found that RelA is required for growth in the absence of external amino acids in both strains. Furthermore, the mutant strain MC58 harboring an ATRrelA in its relA promoter region showed improved growth in minimal medium supplemented with L-cysteine and/or L-glutamine compared to the wild-type strain. Contrary, in strain α522 no differences between the wild-type and the ATRrelA deletion mutant were observed. Together this indicates that ATRrelA interferes with the complex regulatory interplay between the stringent response pathway and L-cysteine as well as L-glutamine metabolism. It further suggests that meningococcal virulence is linked to relA in a strain- and condition- depended manner. In conclusion, this work highlighted the role of the stringent response and of non-coding regulatory elements for bacterial virulence and indicates that virulence might be related to the way how meningococci accomplish growth within the host environments.}, subject = {Neisseria meningitidis}, language = {en} } @article{SchwerkPapandreouSchuhmannetal.2012, author = {Schwerk, Christian and Papandreou, Thalia and Schuhmann, Daniel and Nickol, Laura and Borkowski, Julia and Steinmann, Ulrike and Quednau, Natascha and Stump, Carolin and Weiss, Christel and Berger, J{\"u}rgen and Wolburg, Hartwig and Claus, Heike and Vogel, Ulrich and Ishikawa, Hiroshi and Tenenbaum, Tobias and Schroten, Horst}, title = {Polar Invasion and Translocation of Neisseria meningitidis and Streptococcus suis in a Novel Human Model of the Blood-Cerebrospinal Fluid Barrier}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0030069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131459}, pages = {e30069}, year = {2012}, abstract = {Acute bacterial meningitis is a life-threatening disease in humans. Discussed as entry sites for pathogens into the brain are the blood-brain and the blood-cerebrospinal fluid barrier (BCSFB). Although human brain microvascular endothelial cells (HBMEC) constitute a well established human in vitro model for the blood-brain barrier, until now no reliable human system presenting the BCSFB has been developed. Here, we describe for the first time a functional human BCSFB model based on human choroid plexus papilloma cells (HIBCPP), which display typical hallmarks of a BCSFB as the expression of junctional proteins and formation of tight junctions, a high electrical resistance and minimal levels of macromolecular flux when grown on transwell filters. Importantly, when challenged with the zoonotic pathogen Streptococcus suis or the human pathogenic bacterium Neisseria meningitidis the HIBCPP show polar bacterial invasion only from the physiologically relevant basolateral side. Meningococcal invasion is attenuated by the presence of a capsule and translocated N. meningitidis form microcolonies on the apical side of HIBCPP opposite of sites of entry. As a functionally relevant human model of the BCSFB the HIBCPP offer a wide range of options for analysis of disease-related mechanisms at the choroid plexus epithelium, especially involving human pathogens.}, language = {en} } @phdthesis{Herz2015, author = {Herz, Michaela}, title = {Molecular characterization of the serotonin and cAMP-signalling pathways in Echinococcus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139249}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Alveolar and cystic echinococcosis, caused by Echinococcus multilocularis and Echinococcus granulosus respectively, are severe zoonotic diseases with limited treatment options. The sole curative treatment is the surgical removal of the complete parasite material. Due to late diagnosis, chemotherapeutic treatment often is the only treatment option. Treatment is based on benzimidazoles, which merely act parasitostatic and often display strong side effects. Therefore, new therapeutic drugs are urgently needed. Evolutionarily conserved signalling pathways are known to be involved in hostparasite cross-communication, parasite development and survival. Moreover, they represent potential targets for chemotherapeutic drugs. In this context the roles of the serotonin- and cAMP-signalling pathways in Echinococcus were studied. Genes encoding serotonin receptors, a serotonin transporter and enzymes involved in serotonin biosynthesis could be identified in the E. multilocularis and E. granulosus genomes indicating that these parasites are capable of synthesizing and perceiving serotonin signals. Also the influence of exogenous serotonin on parasite development was studied. Serotonin significantly increased metacestode vesicle formation from primary cells and re-differentiation of protoscoleces. Inhibition of serotonin transport with citalopram significantly reduced metacestode vesicle formation from primary cells and caused death of protoscoleces and metacestodes. Furthermore, it could be shown that serotonin increased phosphorylation of protein kinase A substrates. Taken together, these results show that serotonin and serotonin transport are essential for Echinococcus development and survival. Consequently, components of the serotonin pathway represent potential drug targets. In this work the cAMP-signalling pathway was researched with focus on G-protein coupled receptors and adenylate cyclases. 76 G-protein coupled receptors, including members of all major families were identified in the E. multilocularis genome. Four genes homologous to adenylate cyclase IX were identified in the E. multilocularis genome and three in the E. granulosus genome. While glucagon caused no significant effects, the adenylate cyclase activator forskolin and the adenylate cyclase inhibitor 2', 5' didesoxyadenosine influenced metacestode vesicle formation from primary cells, re-differentiation of protoscoleces and survival of metacestodes. It was further shown that forskolin increases phosphorylation of protein kinase A substrates, indicating that forskolin activates the cAMP-pathway also in cestodes. These results indicate that the cAMP signalling pathway plays an important role in Echinococcus development and survival. To complement this work, the influence of different media and additives on E. granulosus protoscoleces was investigated. Anaerobic conditions and the presence of FBS prolonged protoscolex survival while different media influenced protoscolex activation and development. Taken together, this work provided important insights into developmental processes in Echinococcus and potential drug targets for echinococcosis chemotherapy.}, subject = {Serotonin}, language = {en} } @article{NonoPletinckxLutzetal.2012, author = {Nono, Justin Komguep and Pletinckx, Katrien and Lutz, Manfred B. and Brehm, Klaus}, title = {Excretory/Secretory-Products of Echinococcus multilocularis Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells In Vitro}, series = {PLoS Neglected Tropical Diseases}, volume = {6}, journal = {PLoS Neglected Tropical Diseases}, number = {2}, doi = {10.1371/journal.pntd.0001516}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134280}, pages = {e1516}, year = {2012}, abstract = {Background: Alveolar echinococcosis, caused by Echinococcus multilocularis larvae, is a chronic disease associated with considerable modulation of the host immune response. Dendritic cells (DC) are key effectors in shaping the immune response and among the first cells encountered by the parasite during an infection. Although it is assumed that E. multilocularis, by excretory/secretory (E/S)-products, specifically affects DC to deviate immune responses, little information is available on the molecular nature of respective E/S-products and their mode of action. Methodology/Principal Findings: We established cultivation systems for exposing DC to live material from early (oncosphere), chronic (metacestode) and late (protoscolex) infectious stages. When co-incubated with Echinococcus primary cells, representing the invading oncosphere, or metacestode vesicles, a significant proportion of DC underwent apoptosis and the surviving DC failed to mature. In contrast, DC exposed to protoscoleces upregulated maturation markers and did not undergo apoptosis. After pre-incubation with primary cells and metacestode vesicles, DC showed a strongly impaired ability to be activated by the TLR ligand LPS, which was not observed in DC pre-treated with protoscolex E/S-products. While none of the larvae induced the secretion of pro-inflammatory IL-12p70, the production of immunosuppressive IL-10 was elevated in response to primary cell E/S-products. Finally, upon incubation with DC and naive T-cells, E/S-products from metacestode vesicles led to a significant expansion of Foxp3+ T cells in vitro. Conclusions: This is the first report on the induction of apoptosis in DC by cestode E/S-products. Our data indicate that the early infective stage of E. multilocularis is a strong inducer of tolerance in DC, which is most probably important for generating an immunosuppressive environment at an infection phase in which the parasite is highly vulnerable to host attacks. The induction of CD4+CD25+Foxp3+ T cells through metacestode E/S-products suggests that these cells fulfill an important role for parasite persistence during chronic echinococcosis.}, language = {en} } @article{BijuSchwarzLinkeetal.2011, author = {Biju, Joseph and Schwarz, Roland and Linke, Burkhard and Blom, Jochen and Becker, Anke and Claus, Heike and Goesmann, Alexander and Frosch, Matthias and M{\"u}ller, Tobias and Vogel, Ulrich and Schoen, Christoph}, title = {Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0018441}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137960}, pages = {e18441}, year = {2011}, abstract = {Background Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH) and multilocus sequence typing (MLST) of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. Principal Findings We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA) island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40\% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. Conclusions Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.}, language = {en} } @article{MaidenFrosch2012, author = {Maiden, Martin C. J. and Frosch, Matthias}, title = {Can we, should we, eradicate the meningococcus?}, series = {Vaccine}, volume = {30}, journal = {Vaccine}, number = {Suppl. 2}, doi = {10.1016/j.vaccine.2011.12.068}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125646}, pages = {B52-B56}, year = {2012}, abstract = {The eradication of infectious agents is an attractive means of disease control that, to date, has been achieved for only one human pathogen, the smallpox virus. The introduction of vaccines against Neisseria meningitidis into immunisation schedules, and particularly the conjugate polysaccharide vaccines which can interrupt transmission, raises the question of whether disease caused by this obligate human bacterium can be controlled, eliminated, or even eradicated. The limited number of meningococcal serogroups, lack of an animal reservoir, and importance of meningococcal disease are considerations in favour of eradication; however, the commensal nature of most infections, the high diversity of meningococcal populations, and the lack of comprehensive vaccines are all factors that suggest that this is not feasible. Indeed, any such attempt might be harmful by perturbing the human microbiome and its interaction with the immune system. On balance, the control and possible elimination of disease caused by particular disease-associated meningococcal genotypes is a more achievable and worthwhile goal.}, language = {en} } @article{FraunholzBernhardtSchuldesetal.2013, author = {Fraunholz, Martin and Bernhardt, J{\"o}rg and Schuldes, J{\"o}rg and Daniel, Rolf and Hecker, Michael and Sinh, Bhanu}, title = {Complete Genome Sequence of Staphylococcus aureus 6850, a Highly Cytotoxic and Clinically Virulent Methicillin-Sensitive Strain with Distant Relatedness to Prototype Strains}, series = {Genome Announcements}, volume = {1}, journal = {Genome Announcements}, number = {5}, doi = {10.1128/genomeA.00775-13}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129294}, pages = {e00775-13}, year = {2013}, abstract = {Staphylococcus aureus is a frequent human commensal bacterium and pathogen. Here we report the complete genome sequence of strain 6850 (spa type t185; sequence type 50 [ST50]), a highly cytotoxic and clinically virulent methicillin-sensitive strain from a patient with complicated S. aureus bacteremia associated with osteomyelitis and septic arthritis.}, language = {en} }