@phdthesis{Froeschel2019, author = {Fr{\"o}schel, Christian}, title = {Genomweite Analyse der zellschichtspezifischen Expression in der Arabidopsis-Wurzel nach Inokulation mit pathogenen und mutualistischen Mikroorganismen}, doi = {10.25972/OPUS-14643}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146439}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Obwohl Pflanzenwurzeln mit einer Vielzahl von Pathogenen in Kontakt kommen, sind induzierbare Abwehrreaktionen der Wurzel bisher kaum beschrieben. Aufgrund der konzentrischen Zellschicht-Organisation der Wurzel wird angenommen, dass bei einer Immunantwort in jeder Zellschicht ein spezifisches genetisches Programm aktiviert wird. Eine {\"U}berpr{\"u}fung dieser Hypothese war bisher wegen methodischen Limitierungen nicht m{\"o}glich. Die zellschichtspezifische Expression Epitop-markierter ribosomaler Proteine erlaubt eine Affinit{\"a}tsaufreinigung von Ribosomen und der assoziierten mRNA. Diese Methodik, als TRAP (Translating Ribosome Affinity Purification) bezeichnet, erm{\"o}glicht die Analyse des Translatoms und wurde dahingehend optimiert, pflanzliche Antworten auf Befall durch bodenb{\"u}rtige Mikroorganismen in Rhizodermis, Cortex, Endodermis sowie Zentralzylinder spezifisch zu lokalisieren. Die Genexpression in der Arabidopsis-Wurzel nach Inokulation mit drei Bodenorganismen mit unterschiedlichen Lebensweisen wurde vergleichend betrachtet: Piriformospora indica kann als mutualistischer Pilz pflanzliches Wachstum und Ertr{\"a}ge positiv beeinflussen, wohingegen der vaskul{\"a}re Pilz Verticillium longisporum f{\"u}r erhebliche Verluste im Rapsanbau verantwortlich ist und der hemibiotrophe Oomycet Phytophthora parasitica ein breites Spektrum an Kulturpflanzen bef{\"a}llt und Ernten zerst{\"o}rt. F{\"u}r die Interaktionsstudien zwischen Arabidopsis und den Mikroorganismen w{\"a}hrend ihrer biotrophen Lebensphase wurden sterile in vitro-Infektionssysteme etabliert und mittels TRAP und anschließender RNA-Sequenzierung eine zellschichtspezifische, genomweite Translatomanalyse durchgef{\"u}hrt (Inf-TRAP-Seq). Dabei zeigten sich massive Unterschiede in der differentiellen Genexpression zwischen den Zellschichten, was die Hypothese der zellschichtspezifischen Antworten unterst{\"u}tzt. Die Antworten nach Inokulation mit pathogenen bzw. mutualistischen Mikroorganismen unterschieden sich ebenfalls deutlich, was durch die ungleichen Lebensweisen begr{\"u}ndbar ist. Durch die Inf-TRAP-Seq Methodik konnte z.B. im Zentralzylinder der Pathogen-infizierten Wurzeln eine expressionelle Repression von positiven Regulatoren des Zellzyklus nachgewiesen werden, dagegen in den mit P. indica besiedelten Wurzeln nicht. Dies korrelierte mit einer Pathogen-induzierten Inhibition des Wurzelwachstums, welche nicht nach Inokulation mit P. indica zu beobachten war. Obwohl keines der drei Mikroorganismen in der Lage ist, den Zentralzylinder direkt zu penetrieren, konnte hier eine differentielle Genexpression detektiert werden. Demzufolge ist ein Signalaustausch zu postulieren, {\"u}ber den {\"a}ußere und innere Zellschichten miteinander kommunizieren. In der Endodermis konnten Genexpressionsmuster identifiziert werden, die zu einer Verst{\"a}rkung der Barriere-Funktionen dieser Zellschicht f{\"u}hren. So k{\"o}nnte etwa durch Lignifizierungsprozesse die Ausbreitung der Mikroorganismen begrenzt werden. Alle drei Mikroorganismen l{\"o}sten besonders im Cortex die Induktion von Genen f{\"u}r die Biosynthese Trp-abh{\"a}ngiger, antimikrobieller Sekund{\"a}rmetaboliten aus. Die biologische Relevanz dieser Verteilungen kann nun gekl{\"a}rt werden. Zusammenfassend konnten in dieser Dissertation erstmals die durch Mikroorganismen hervorgerufenen zellschichtspezifischen Antworten der pflanzlichen Wurzel aufgel{\"o}st werden. Vergleichende bioinformatische Analyse dieses umfangreichen Datensatzes erm{\"o}glicht nun, gezielt testbare Hypothesen zu generieren. Ein Verst{\"a}ndnis der zellschichtspezifischen Abwehrmaßnahmen der Wurzel ist essentiell f{\"u}r die Entwicklung neuer Strategien zur Ertragssteigerung und zum Schutz von Nutzpflanzen gegen Pathogene in der Landwirtschaft.}, subject = {Schmalwand }, language = {de} } @phdthesis{Glenz2019, author = {Glenz, Ren{\´e}}, title = {Die Rolle von Sphingobasen in der pflanzlichen Zelltodreaktion}, doi = {10.25972/OPUS-18790}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187903}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Sphingobasen bilden das Grundger{\"u}st und die Ausgangsbausteine f{\"u}r die Biosynthese von Sphingolipiden. W{\"a}hrend komplexere Sphingolipide einen wichtigen Bestandteil von eukaryotischen Membranen bilden, sind Sphingobasen, die auch als long-chain bases (LCBs) bezeichnet werden, als Signalmolek{\"u}le bei zellul{\"a}ren Prozessen in Eukaryoten bekannt. Im tierischen System wurden antagonistische Effekte von nicht-phosphorylierten Sphingobasen (LCBs) und ihren phosphorylierten Gegenst{\"u}cken (LCB-Ps) bei vielen Zellfunktionen, insbesondere der Apoptose, nachgewiesen und die zugrundeliegenden Signalwege umfassend aufgekl{\"a}rt. Im Gegensatz dazu sind in Pflanzen weniger Belege f{\"u}r einen antagonistischen Effekt und m{\"o}gliche Signaltransduktionsmechanismen bekannt. F{\"u}r eine regulatorische Funktion von Sphingobasen beim programmierten Zelltod (PCD) in Pflanzen existieren mehrere Hinweise: (I) Mutationen in Genen, die den Sphingobasen-Metabolismus betreffen, f{\"u}hren zum Teil zu spontanem PCD und ver{\"a}nderten Zelltodreaktionen. (II) Die Gehalte von LCBs sind bei verschiedenen Zelltod-ausl{\"o}senden Bedingungen erh{\"o}ht. (III) Nekrotrophe Pathogene produzieren Toxine, wie Fumonisin B1 (FB1), die mit dem Sphingolipid-Metabolismus der Wirtspflanze interferieren, was wiederum die Ursache f{\"u}r den dadurch ausgel{\"o}sten PCD darstellt. (IV) Die Behandlung von Pflanzen mit LCBs, nicht aber mit LCB-Ps, f{\"u}hrt zu Zelltod. In dieser Arbeit wurde die Rolle von Sphingobasen in der pflanzlichen Zelltodreaktion untersucht, wobei der Fokus auf der {\"U}berpr{\"u}fung der Hypothese eines antagonistischen, Zelltod-hemmenden Effekts von LCB-Ps lag. Anhand von Leitf{\"a}higkeit-basierten Messungen bei Blattscheiben von Arabidopsis thaliana wurde der durch Behandlung mit LCBs und separater oder gleichzeitiger Zugabe von LCB-Ps auftretende Zelltod bestimmt. Mit dieser Art der Quantifizierung wurde der an anderer Stelle publizierte inhibierende Effekt von LCB-Ps auf den LCB-induzierten Zelltod nachgewiesen. Durch parallele Messung der Spiegel der applizierten Sphingobasen im Gewebe mittels HPLC-MS/MS konnte dieser Antagonismus allerdings auf eine reduzierte Aufnahme der LCB bei Anwesenheit der LCB-P zur{\"u}ckgef{\"u}hrt werden, was auch durch eine zeitlich getrennte Behandlung mit den Sphingobasen best{\"a}tigt wurde. Dar{\"u}ber hinaus wurde der Einfluss einer exogenen Zugabe von LCBs und LCB-Ps auf den durch Pseudomonas syringae induzierten Zelltod von A. thaliana untersucht. F{\"u}r LCB-Ps wurde dabei kein Zelltod-hemmender Effekt beobachtet, ebenso wenig wie ein Einfluss von LCB-Ps auf den PCD, der durch rekombinante Expression und Erkennung eines Avirulenzproteins in Arabidopsis ausgel{\"o}st wurde. F{\"u}r LCBs wurde dagegen eine direkte antibakterielle Wirkung im Zuge der Experimente mit P. syringae gezeigt, die den in einer anderen Publikation beschriebenen inhibierenden Effekt von LCBs auf den Pathogen-induzierten Zelltod in Pflanzen relativiert. In weiteren Ans{\"a}tzen wurden Arabidopsis-Mutanten von Enzymen des Sphingobasen-Metabolismus (LCB-Kinase, LCB-P-Phosphatase, LCB-P-Lyase) hinsichtlich ver{\"a}nderter in-situ-Spiegel von LCBs/LCB-Ps funktionell charakterisiert. Der Ph{\"a}notyp der Mutanten gegen{\"u}ber Fumonisin B1 wurde zum einen anhand eines Wachstumstests mit Keimlingen und zum anderen anhand des Zelltods von Blattscheiben bestimmt und die dabei akkumulierenden Sphingobasen quantifiziert. Die Sensitivit{\"a}t der verschiedenen Linien gegen{\"u}ber FB1 korrelierte eng mit den Spiegeln der LCBs, w{\"a}hrend hohe Gehalte von LCB-Ps alleine nicht in der Lage waren den Zelltod zu verringern. In einzelnen Mutanten konnte sogar eine Korrelation von stark erh{\"o}hten LCB-P-Spiegeln mit einer besonderen Sensitivit{\"a}t gegen{\"u}ber FB1 festgestellt werden. Die Ergebnisse der vorliegenden Arbeit stellen die Hypothese eines antagonistischen Effekts von phosphorylierten Sphingobasen beim pflanzlichen Zelltod in Frage. Stattdessen konnte in detaillierten Analysen der Sphingobasen-Spiegel die positive Korrelation der Gehalte von LCBs mit dem Zelltod gezeigt werden. Die hier durchgef{\"u}hrten Experimente liefern damit nicht nur weitere Belege f{\"u}r die Zelltod-f{\"o}rdernde Wirkung von nicht-phosphorylierten Sphingobasen, sondern tragen zum Verst{\"a}ndnis der Sphingobasen-Hom{\"o}ostase und des Sphingobasen-induzierten PCD in Pflanzen bei.}, subject = {Sphingolipide}, language = {de} } @phdthesis{Tian2019, author = {Tian, Yuehui}, title = {Characterization of novel rhodopsins with light-regulated cGMP production or cGMP degradation}, doi = {10.25972/OPUS-16814}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168143}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Photoreceptors are widely occurring in almost all kingdoms of life. They mediate the first step in sensing electromagnetic radiation of different wavelength. Absorption spectra are found within the strongest radiation from the sun and absorption usually triggers downstream signaling pathways. Until now, mainly 6 classes of representative photoreceptors are known: five water-soluble proteins, of these three classes of blue light-sensitive proteins including LOV (light-oxygen-voltage), BLUF (blue-light using FAD), and cryptochrome modules with flavin (vitamin B-related) nucleotides as chromophore; while two classes of yellow and red light-sensitive proteins consist of xanthopsin and phytochrome, respectively. Lastly, as uniquely integral membrane proteins, the class of rhodopsins can usually sense over a wide absorption spectrum, ranging from ultra-violet to green and even red light. Rhodopsins can be further divided into two types, i.e., microbial (type I) and animal (type II) rhodopsins. Rhodopsins consist of the protein opsin and the covalently bound chromophore retinal (vitamin A aldehyde). In this thesis, I focus on identification and characterization of novel type I opsins with guanylyl cyclase activity from green algae and a phosphodiesterase opsin from the protist Salpingoeca rosetta. Until 2014, all known type I and II rhodopsins showed a typical structure with seven transmembrane helices (7TM), an extracellular N-terminus and a cytosolic C-terminus. The proven function of the experimentally characterized type I rhodopsins was membrane transport of ions or the coupling to a transducer which enables phototaxis via a signaling chain. A completely new class of type I rhodopsins with enzymatic activity was identified in 2014. A light-activated guanylyl cyclase opsin was discovered in the fungus Blastocladiella emersonii which was named Cyclop (Cyclase opsin) by Gao et al. (2015), after heterologous expression and rigorous in-vitro characterization. BeCyclop is the first opsin for which an 8 transmembrane helices (8TM) structure was demonstrated by Gao et al. (2015). Earlier (2004), a novel class of enzymatic rhodopsins was predicted to exist in C. reinhardtii by expressed sequence tag (EST) and genome data, however, no functional data were provided up to now. The hypothetical rhodopsin included an N-terminal opsin domain, a fused two-component system with histidinekinase and response regulator domain, and a C-terminal guanylyl cyclase (GC) domain. This suggested that there could be a biochemical signaling cascade, integrating light-induction and ATP-dependent phosphate transfer, and as output the light-sensitive cGMP production. One of my projects focused on characterizing two such opsins from the green algae Chlamydomonas reinhardtii and Volvox carteri which we then named 2c-Cyclop (two-component Cyclase opsin), Cr2c-Cyclop and Vc2c-Cyclop, respectively. My results show that both 2c-Cyclops are light-inhibited GCs. Interestingly, Cr2c-Cyclop and Vc2c-Cyclop are very sensitive to light and ATP-dependent, whereby the action spectra of Cr2c-Cyclop and Vc2c-Cyclop peak at ~540 nm and ~560 nm, respectively. More importantly, guanylyl cyclase activity is dependent on continuous phosphate transfer between histidine kinase and response regulator. However, green light can dramatically block phosphoryl group transfer and inhibit cyclase activity. Accordingly, mutation of the retinal-binding lysine in the opsin domain resulted in GC activity and lacking light-inhibition. A novel rhodopsin phosphodiesterase from the protist Salpingoeca rosetta (SrRhoPDE) was discovered in 2017. However, the previous two studies of 2017 claimed a very weak or absent light-regulation. Here I give strong evidence for light-regulation by studying the activity of SrRhoPDE, expressed in Xenopus laevis oocytes, in-vitro at different cGMP concentrations. Surprisingly, hydrolysis of cGMP shows a ~100-fold higher turnover than that of cAMP. Light can enhance substrate affinity by decreasing the Km value for cGMP from 80 μM to 13 μM, but increases the maximum turnover only by ~30\%. In addition, two key single mutants, SrRhoPDE K296A or K296M, can abolish the light-activation effect by interrupting a covalent bond of Schiff base type to the chromophore retinal. I also demonstrate that SrRhoPDE shows cytosolic N- and C- termini, most likely via an 8-TM structure. In the future, SrRhoPDE can be a potentially useful optogenetic tool for light-regulation of cGMP concentration, possibly after further improvements by genetic engineering.}, language = {en} } @phdthesis{Ferber2019, author = {Ferber, Elena}, title = {Transkriptionelle, metabolische und physiologische Anpassung nach Selbstintoxikation mit reaktiven Sekund{\"a}rstoffen: die Glukosinolat-Bombe in Arabidopsis thaliana}, doi = {10.25972/OPUS-18511}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185116}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In Brassicaceae werden bei einer Gewebszerst{\"o}rung unreaktive Glukosinolate durch das Enzym Myrosinase hydrolysiert. Es entstehen reaktive Substanzen wie Isothiocyanate (ITCs). Da diese Reaktion sehr schnell erfolgt wird sie auch als Senf{\"o}l-Glukosid-Bombe bezeichnet. In Arabidopsis thaliana erfolgt nach Verwundung und Pathogeninfektion eine massive Akkumulation des ITCs Sulforaphan (SF), welches eine reaktive elektophile Spezies (RES) darstellt. Zu der Gruppe der RES z{\"a}hlen auch einige Oxylipine mit einer α,β-unges{\"a}ttigten Carbonylgruppen wie 12-oxo-Phytodiens{\"a}ure (OPDA) oder Phytoprostan A1 (PPA1). Die F{\"a}higkeit der kovalenten Modifikation von Peptiden und Proteinen gilt als essentiell sowohl f{\"u}r die toxischen als auch die Gen-induzierenden Eigenschaften der RES. Neben ihrer Reaktivit{\"a}t spielt auch die Lipophilie eine Rolle f{\"u}r die F{\"a}higkeit {\"u}ber Membranen zu diffundieren und unspezifisch an Proteine zu binden. Die in der vorliegenden Arbeit durchgef{\"u}hrten Transkriptomanalysen an Arabidopsis-Keimlingen mit sub-toxischen Konzentrationen von SF, Benzylisothiocyanat (BITC) und dem Oxylipin Prostaglandin A1 (PGA1) zeigten, dass strukturell sehr verschiedene RES einen gemeinsamen Satz von 55 Genen induzieren. Unter diesen befanden sich verschiedene Hitzeschock-, Stressassoziierte- und Detoxifizierungsgene. Diese Ergebnisse deuten darauf hin, dass die Aktivierung {\"u}ber eine Muster-spezifische Erkennung der RES erfolgt. Als einen m{\"o}glichen Mechanismus der RES-vermittelten Geninduktion wird die Regulation durch die Ver{\"a}nderung des zellul{\"a}ren Redox-Potentials als Folge kovalenter Modifikation von GSH durch RES diskutiert. Die Untersuchung der GSH-Gehalte sowie des Redox-Potential nach Behandlung mit sub-toxischen RES-Konzentrationen in Arabidopsis-Keimlingen zeigte jedoch unter den getesteten Bedingungen keine Ver{\"a}nderung. Neben dem Erkennungs- und Signaltransduktionsmechanismus ist auch die biologische Bedeutung von RES f{\"u}r die Vermittlung einer Stresstoleranz noch weitgehend unklar. Durch die Untersuchung der Genexpression in Arabidopsis-Pflanzen nach Verwundung konnte gezeigt werden, dass eine wundinduzierte Akkumulation von SF zur Induktion einiger Gene der Hitzeschockreaktion (HSR) im Wildtyp, jedoch nicht in der myrosinase-defiziten tgg1tgg2-Mutante f{\"u}hrte. Auch in der Transkriptomanalyse war nach RES-Gabe ebenfalls eine starke Induktion hitze-responsiver Gene, deren Regulation {\"u}ber den Masterregulator dem Hitzeschock-TF A1 vermittelt wird, zu beobachten. Besonders die Induktion der HSPs, welche als Chaperone fungieren und damit Thiolgruppen von Proteinen vor Modifikation sch{\"u}tzen k{\"o}nnen, haben vermutlich bei chemischer Intoxikation protektive Eigenschaften f{\"u}r die Zellen. Tats{\"a}chlich zeigte sich unter den gew{\"a}hlten Bedingungen die hsfa1a,b,d,e-Mutante empfindlicher gegen{\"u}ber ITCs als der Wildtyp. Die F{\"a}higkeit, eine HSR ausbilden zu k{\"o}nnen, scheint in Arabidopsis bei chemischer Intoxikation eine bedeutende Rolle zu spielen. Eine Vorbehandlung mit RES wie SF, BITC oder dem HSP90-Inhibitor Radicicol in Arabidopsis-Keimlingen konnte eine Schutzwirkung vor chemischer Intoxikation vermitteln. Dies erfolgte jedoch nicht nach Behandlung mit moderater Hitze (zwei Stunden, 37 °C). Somit scheint die HSR alleine nicht ausreichend f{\"u}r den Aufbau eines effektiven Schutzes vor BITC-Intoxikation zu sein. Als metabolische Antwort von Arabidopsis-Keimlingen auf Intoxikation mit RES konnte eine konzentrationsabh{\"a}ngige Senkung der maximalen Quantenausbeute am Photosystem II (PSII), sowie gleichzeitig eine Akkumulation an TAG-Spezies beobachtet werden. Diese metabolische Reaktion ist in der Literatur bereits als Schutz gegen Hitzestress beschrieben. Die Bedeutung der TAG-Akkumulation nach chemischem ITC-Stress ist noch unklar.}, subject = {Ackerschmalwand}, language = {de} } @phdthesis{Beck2019, author = {Beck, Sebastian}, title = {Using optogenetics to influence the circadian clock of \(Drosophila\) \(melanogaster\)}, doi = {10.25972/OPUS-18495}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184952}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Almost all life forms on earth have adapted to the most impactful and most predictable recurring change in environmental condition, the cycle of day and night, caused by the axial rotation of the planet. As a result many animals have evolved intricate endogenous clocks, which adapt and synchronize the organisms' physiology, metabolism and behaviour to the daily change in environmental conditions. The scientific field researching these endogenous clocks is called chronobiology and has steadily grown in size, scope and relevance since the works of the earliest pioneers in the 1960s. The number one model organism for the research of circadian clocks is the fruit fly, Drosophila melanogaster, whose clock serves as the entry point to understanding the basic inner workings of such an intricately constructed endogenous timekeeping system. In this thesis it was attempted to combine the research on the circadian clock with the techniques of optogenetics, a fairly new scientific field, launched by the discovery of Channelrhodopsin 2 just over 15 years ago. Channelrhodopsin 2 is a light-gated ion channel found in the green alga Chlamydomonas reinhardtii. In optogenetics, researches use these light-gated ion channels like Channelrhodopsin 2 by heterologously expressing them in cells and tissues of other organisms, which can then be stimulated by the application of light. This is most useful when studying neurons, as these channels provide an almost non-invasive tool to depolarize the neuronal plasma membranes at will. The goal of this thesis was to develop an optogenetic tool, which would be able to influence and phase shift the circadian clock of Drosophila melanogaster upon illumination. A phase shift is the adaptive response of the circadian clock to an outside stimulus that signals a change in the environmental light cycle. An optogenetic tool, able to influence and phase shift the circadian clock predictably and reliably, would open up many new ways and methods of researching the neuronal network of the clock and which neurons communicate to what extent, ultimately synchronizing the network. The first optogenetic tool to be tested in the circadian clock of Drosophila melanogaster was ChR2-XXL, a channelrhodopsin variant with dramatically increased expression levels and photocurrents combined with a prolonged open state. The specific expression of ChR2-XXL and of later constructs was facilitated by deploying the three different clock-specific GAL4-driver lines, clk856-gal4, pdf-gal4 and mai179-gal4. Although ChR2-XXL was shown to be highly effective at depolarizing neurons, these stimulations proved to be unable to significantly phase shift the circadian clock of Drosophila. The second series of experiments was conducted with the conceptually novel optogenetic tools Olf-bPAC and SthK-bPAC, which respectively combine a cyclic nucleotide-gated ion channel (Olf and SthK) with the light-activated adenylyl-cyclase bPAC. These tools proved to be quite useful when expressed in the motor neurons of instar-3 larvae of Drosophila, paralyzing the larvae upon illumination, as well as affecting body length. This way, these new tools could be precisely characterized, spawning a successfully published research paper, centered around their electrophysiological characterization and their applicability in model organisms like Drosophila. In the circadian clock however, these tools caused substantial damage, producing severe arrhythmicity and anomalies in neuronal development. Using a temperature-sensitive GAL80-line to delay the expression until after the flies had eclosed, yielded no positive results either. The last series of experiments saw the use of another new series of optogenetic tools, modelled after the Olf-bPAC, with bPAC swapped out for CyclOp, a membrane-bound guanylyl-cyclase, coupled with less potent versions of the Olf. This final attempt however also ended up being unsuccessful. While these tools could efficiently depolarize neuronal membranes upon illumination, they were ultimately unable to stimulate the circadian clock in way that would cause it to phase shift. Taken together, these mostly negative results indicate that an optogenetic manipulation of the circadian clock of Drosophila melanogaster is an extremely challenging subject. As light already constitutes the most impactful environmental factor on the circadian clock, the combination of chronobiology with optogenetics demands the parameters of the conducted experiments to be tuned with an extremely high degree of precision, if one hopes to receive positive results from these types of experiments at all.}, subject = {Chronobiologie}, language = {en} } @phdthesis{Dindas2019, author = {Dindas, Julian}, title = {Cytosolic Ca\(^2\)\(^+\), a master regulator of vacuolar ion conductance and fast auxin signaling in \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-15863}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158638}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Das Phytohormon Auxin erf{\"u}llt wichtige Funktionen bei der Initiierung von pflanzlichen Geweben und Organen, wie auch in der Steuerung des Wurzelwachstums im Zusammenspiel mit {\"a}ußeren Reizen wie Schwerkraft, Wasser- und N{\"a}hstoffverf{\"u}gbarkeit. Diese Funktionen basieren dabei vor allem auf der Auxin-abh{\"a}ngigen Regulation von Zellteilung und -streckung. Wichtig f{\"u}r letzteres ist dabei die Kontrolle des Zellturgors durch die Vakuole. Als Speicher f{\"u}r N{\"a}hrstoffe, Metabolite und Toxine sind Vakuolen von essentieller Bedeutung. Vakuol{\"a}r gespeicherte Metabolite und Ionen werden sowohl {\"u}ber aktive Transportprozesse, als auch passiv durch Ionenkan{\"a}le, {\"u}ber die vakuol{\"a}re Membran mit dem Zytoplasma ausgetauscht. In ihrer Funktion als second messenger sind Kalziumionen wichtige Regulatoren, aber auch Gegenstand vakuol{\"a}rer Transportprozesse. {\"A}nderungen der zytosolischen Kalziumkonzentration wirken nicht nur lokal, sie werden auch mit einer Signalweiterleitung {\"u}ber l{\"a}ngere Distanzen in Verbindung gebracht. Im Rahmen dieser Arbeit wurden elektrophysiologische Methoden mit bildgebenden Methoden kombiniert um Einblicke in das Zusammenspiel zwischen zytosolischen Kalziumsignalen, vakuol{\"a}rer Transportprozesse und der Auxin-Physiologie im intakten pflanzlichen Organismus zu gewinnen. Kalziumsignale sind an der Regulierung vakuol{\"a}rer Ionenkan{\"a}le und Transporter beteiligt. Um dies im intakten Organismus zu untersuchen wurden im Modellsystem junger Wurzelhaare von Arabidopsis thaliana Messungen mit intrazellul{\"a}ren Mikroelektroden durchgef{\"u}hrt. Mittels der Zwei-Elektroden-Spannungsklemm-Technik konnte best{\"a}tigt werden, dass die vakuol{\"a}re Membran der limitierende elektrische Wiederstand w{\"a}hrend intravakuol{\"a}rer Messungen ist und so gemessene Ionenstr{\"o}me in der Tat nur die Str{\"o}me {\"u}ber die vakuol{\"a}re Membran repr{\"a}sentieren. Die bereits bekannte zeitabh{\"a}ngige Abnahme der vakuol{\"a}ren Leitf{\"a}higkeit in Einstichexperimenten konnte weiterhin mit einer einstichbedingten, transienten Erh{\"o}hung der zytosolischen Kalziumkonzentration korreliert werden. Durch intravakuol{\"a}re Spannungsklemmexperimente in Wurzelhaarzellen von Kalziumreporterpflanzen konnte dieser Zusammenhang zwischen vakuol{\"a}rer Leitf{\"a}higkeit und der zytosolischen Kalziumkonzentration best{\"a}tigt werden. Die Vakuole ist jedoch nicht nur ein Empf{\"a}nger zytosolischer Kalziumsignale. Da die Vakuole den gr{\"o}ßten intrazellul{\"a}ren Kalziumspeicher darstellt, wird seit Langem diskutiert, ob sie auch an der Erzeugung solcher Signale beteiligt ist. Dies konnte in intakten Wurzelhaarzellen best{\"a}tigt werden. {\"A}nderungen des vakuol{\"a}ren Membranpotentials wirkten sich auf die zytosolische Kalziumkonzentration in diesen Zellen aus. W{\"a}hrend depolarisierende Potentiale zu einer Erh{\"o}hung der zytosolischen Kalziumkonzentration f{\"u}hrten, bewirkte eine Hyperpolarisierung der vakuol{\"a}ren Membran das Gegenteil. Thermodynamische {\"U}berlegungen zum passiven und aktiven Kalziumtransport {\"u}ber die vakuol{\"a}re Membran legten dabei den Schluss nahe, dass die hierin beschriebenen Ergebnisse das Verhalten von vakuol{\"a}ren H+/Ca2+ Austauschern wiederspiegeln, deren Aktivit{\"a}t durch die protonenmotorische Kraft bestimmt wird. Im Rahmen dieser Arbeit stellte sich weiterhin heraus, dass zytosolisches Kalzium ebenso ein zentraler Regulator eines schnellen Auxin-induzierten Signalweges ist, {\"u}ber den der polare Transport des Hormons reguliert wird. Im gleichen Modellsystem junger Wurzelhaare konnte gezeigt werden, dass die externe Applikation von Auxin eine sehr schnelle, Auxinkonzentrations- und pH-abh{\"a}ngige Depolarisation des Plasmamembranpotentials zur Folge hat. Synchron zur Depolarisation des Plasmamembranpotentials wurden im Zytosol transiente Kalziumsignale registriert. Diese wurden durch einen von Auxin aktivierten Einstrom von Kalziumionen durch den Ionenkanal CNGC14 hervorgerufen. Experimente an Verlustmutanten als auch pharmakologische Experimente zeigten, dass zur Auxin-induzierten Aktivierung des Kalziumkanals die Auxin-Perzeption durch die F-box Proteine der TIR1/AFB Familie erforderlich ist. Durch Untersuchungen der Auxin-abh{\"a}ngigen Depolarisation wie auch des Auxin-induzierten Einstroms von Protonen in epidermale Wurzelzellen von Verlustmutanten konnte gezeigt werden, dass die sekund{\"a}r aktive Aufnahme von Auxin durch das hochaffine Transportprotein AUX1 f{\"u}r die schnelle Depolarisation verantwortlich ist. Nicht nur die zytosolischen Kalziumsignale korrelierten mit der CNGC14 Funktion, sondern ebenso die AUX1-vermittelte Depolarisation von Wurzelhaaren. Eine unver{\"a}nderte Expression von AUX1 in der cngc14 Verlustmutante legte dabei den Schluss nahe, dass die Aktivit{\"a}t von AUX1 posttranslational reguliert werden muss. Diese Hypothese erfuhr Unterst{\"u}tzung durch Experimente, in denen die Behandlung mit dem Kalziumkanalblocker Lanthan zu einer Inaktivierung von AUX1 im Wildtyp f{\"u}hrte. Die zytosolische Beladung einzelner epidermaler Wurzelzellen mit Auxin hatte die Ausbreitung lateraler und acropetaler Kalziumwellen zur Folge. Diese korrelierten mit einer Verschiebung des Auxin-Gradienten an der Wurzelspitze und unterst{\"u}tzten somit eine hypothetische Kalziumabh{\"a}ngige Regulation des polaren Auxin Transports. Ein Model f{\"u}r einen schnellen, Auxin induzierten und kalziumabh{\"a}ngigen Signalweg wird pr{\"a}sentiert und dessen Bedeutung f{\"u}r das gravitrope Wurzelwachstum diskutiert. Da die AUX1-vermittelte Depolarisation in Abh{\"a}ngigkeit von der externen Phosphatkonzentration variierte, wird die Bedeutung dieses schnellen Signalwegs ebenso f{\"u}r die Anpassung des Wurzelhaarwachstums an eine nicht ausreichende Verf{\"u}gbarkeit von Phosphat diskutiert.}, subject = {Ackerschmalwand}, language = {en} } @phdthesis{Huerter2019, author = {H{\"u}rter, Anna-Lena}, title = {Funktion von Anionenkan{\"a}len bei der Entwicklung der Wurzelkn{\"o}llchen- und Arbuskul{\"a}ren Mykorrhiza-Symbiose in \(Medicago\) \(truncatula\)}, doi = {10.25972/OPUS-15841}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158419}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Bei der arbuskul{\"a}ren Myorrhiza-Symbiose (AM) und der Wurzelkn{\"o}llchen-Symbiose (RNS) handelt es sich um symbiotische Interaktionen, die einen großen Vorteil f{\"u}r Pflanzenwachstum und kultivierung mit sich bringen. W{\"a}hrend bei der AM Pilze die Pflanze mit verschiedenen N{\"a}hrstoffen aus dem Boden versorgen, stellen die in den Wurzelkn{\"o}llchen lokalisierten Rhizobien der Pflanze fixierte Stickstoffverbindungen zur Verf{\"u}gung. Folglich ist es von großem Interesse, die Entwicklung dieser Symbiosen im Detail zu verstehen. F{\"u}r die Erkennung der arbuskul{\"a}ren Mykorrhiza-Pilze und der Stickstoff-fixierenden Rhizobien durch die Pflanze sind l{\"o}sliche symbiotische Signalmolek{\"u}le essentiell, die zu der Gruppe der Lipochitinoligosaccharide (LCOs) geh{\"o}ren. W{\"a}hrend der Entwicklung der AM und der RNS erkennen die Pflanzenwurzeln diese LCOs {\"u}ber Lysin-Motiv-Rezeptor-{\"a}hnliche Kinasen der Plasmamembran. Eine der ersten Antworten der Wurzelzellen auf Nod-LCOs ist eine Depolarisierung des Membranpotentials. An dieser Antwort sind mit großer Wahrscheinlichkeit Anionenkan{\"a}le der Plasmamembran beteiligt, da sie auch bei Depolarisierungen als Antwort auf andere Stimuli bzw. Stressantworten involviert sind. In Arabidopsis stellt die S-Typ-Familie eine bedeutende Gruppe von Anionenkan{\"a}len dar, die von Calcium-abh{\"a}ngigen Kinasen (CPKs) aktiviert werden. Da Nod-LCOs repetitive Ver{\"a}nderungen des zytosolischen Calcium-Levels induzieren, wurde in dieser Arbeit die Hypothese aufgestellt, dass Calcium-Signale CPKs aktivieren. CPKs sorgen im Gegenzug f{\"u}r die Stimulation von S-Typ-Anionenkan{\"a}len in Wurzelzellen. Die {\"A}nderungen des Membranpotentials in M. truncatula-Wurzelhaarzellen als Antwort auf Nod- und Myc-LCOs wurden mittels intrazellul{\"a}rer Mikroelektroden analysiert. Es wurde gezeigt, dass Nod-LCOs in M. truncatula-Wurzelhaarzellen eine Depolarisierung des Membranpotentials induzieren. Doch Wurzelhaarzellen reagieren nicht nur auf Nod-LCOs. So konnte in dieser Studie zum ersten Mal eine Depolarisierung als Antwort auf sulfatisierte Myc-LCOs nachgewiesen werden. Eine zweite Gruppe von Myc-LCOs, denen die Sulfatgruppe fehlt, l{\"o}ste keine Reaktion des Membranpotentials aus. Diese Daten deuten darauf hin, dass Wurzelhaarzellen f{\"u}r die Erkennung von sulfatisierten LCOs von symbiotischen Pilzen und Bakterien dasselbe Perzeptionssystem nutzen. Diese Schlussfolgerung wird von Experimenten unterst{\"u}tzt, in denen vor der Stimulation durch Nod-LCOs ein sulfatisierter Myc-LCO hinzugegeben wurde. Diese sukzessive Zugabe von zwei Stimuli f{\"u}hrte zu einer einzigen Depolarisierung. Die sulfatisierten Myc-LCOs unterdr{\"u}ckten die Antwort des Membranpotentials auf Nod-LCOs. Die Beziehung zwischen Nod-LCO-induzierten zytosolischen Calcium-Signalen und {\"A}nderungen des Membranpotentials wurde mit einer Kombination aus intrazellul{\"a}ren Mikroelektroden und Imaging eines Calcium-sensitiven Fluoreszenzfarbstoffs analysiert. In Messungen der zytosolischen Calcium-Konzentration wurde keine transiente Zunahme innerhalb der ersten vier Minuten nach der Applikation der Nod-LCOs beobachtet. Die durch Nod-LCOs induzierten Depolarisierungen traten fr{\"u}her auf und erreichten ihr Maximum normalerweise nach drei Minuten. Demnach geht die Depolarisierung des Membranpotentials den zytosolischen Calcium-Signalen voraus. Diese Beobachtung wurde von simultanen Messungen beider Antworten best{\"a}tigt. Um der M{\"o}glichkeit einer Beteiligung von S-Typ-Anionenkan{\"a}len an der LCO-abh{\"a}ngigen Depolarisierung nachzugehen, wurden zwei in den Wurzeln exprimierte M. truncatula-Orthologe der AtSLAC1-Anionenkanal-Familie identifiziert. Die klonierten Anionenkan{\"a}le, MtSLAC1, MtSLAH2-3A und MtSLAH2-3B zeigten bei der Untersuchung in Xenopus-Oozyten die typischen Charakteristika von S-Typ-Anionenkan{\"a}len. So konnte gezeigt werden, dass MtSLAH2-3A und MtSLAH2-3B eine Proteinkinase sowie externes Nitrat zur Aktivierung ben{\"o}tigen. Außerdem zeichnen sie sich durch eine sehr viel h{\"o}here Permeabilit{\"a}t f{\"u}r Nitrat im Vergleich zu Chlorid aus. {\"A}hnlich wie bei AtSLAH3 macht eine Koexpression mit AtSLAH1 genau wie eine intrazellul{\"a}re Azidifikation MtSLAH2-3A und MtSLAH2-3B zu Anionenkan{\"a}len, die unabh{\"a}ngig von externem Nitrat und einer Phosphorylierung durch eine Proteinkinase aktiv sind. Weil S-Typ-Anionenkan{\"a}le eine hohe Permeabilit{\"a}t f{\"u}r Nitrat aufweisen, wurde der Einfluss von {\"A}nderungen der extrazellul{\"a}ren Anionenkonzentration auf die Nod-LCO-induzierte Depolarisierung analysiert. Es stellte sich heraus, dass eine Verringerung der extrazellul{\"a}ren Nitratkonzentration die Antwort beschleunigt. Eine Erh{\"o}hung der extrazellul{\"a}ren Chlorid- und Sulfatkonzentration hingegen f{\"u}hrte zu einer Verst{\"a}rkung der Depolarisierung. Diese Beobachtung spricht daf{\"u}r, dass andere Anionenkanal-Typen wie ALMT-Kan{\"a}le an der Depolarisierung des Membranpotentials durch LCOs beteiligt sind. Die Daten dieser Arbeit zeigen eine Abh{\"a}ngigkeit der Nod-LCO-induzierten {\"A}nderungen des Membranpotentials vom M. truncatula-Genotyp. Neben Nod-LCOs l{\"o}sen auch sulfatisierte Myc-LCOs eine Depolarisierung des Membranpotentials aus. Vermutlich werden sulfatisierte Nod- und Myc-LCOs von demselben Rezeptorsystem erkannt. Die Nod-LCO-induzierte Depolarisierung ist unabh{\"a}ngig von {\"A}nderungen des zytosolischen Calcium-Levels. Folglich sind in die Depolarisierung keine S-Typ-Anionenkan{\"a}le involviert, die ausschließlich durch Calcium-abh{\"a}ngige Protein-Kinasen aktiviert werden. Interessanterweise lassen sich die MtSLAH2-3-Anionenkan{\"a}le aus M. truncatula im Gegensatz zu AtSLAH3 von Calcium-unabh{\"a}ngigen SnRK2/OST1-Proteinkinasen aktivieren. Dies erm{\"o}glicht die Aktivierung der MtSLAH2-3-Anionenkan{\"a}le in Abwesenheit eines Calcium-Signals. In weiterf{\"u}hrenden Studien sollten die Genexpressionsprofile von Calcium-unabh{\"a}ngigen Proteinkinasen wie SnRK2 und S-Typ-Anionenkan{\"a}len aus M. truncatula sowie deren Interaktionen untersucht werden. So k{\"o}nnte eine Aussage dar{\"u}ber getroffen werden, ob diese Proteinkinasen die Anionenkan{\"a}le MtSLAH2-3 Nod-LCO-spezifisch aktivieren. Außerdem w{\"a}re es von großem Interesse, verschiedene M. truncatula-Mutanten zu untersuchen, denen Gene f{\"u}r MtSLAH2-3A, MtSLAH2-3B und R-Typ-Anionenkan{\"a}le fehlen. Diese Experimente k{\"o}nnten zur Identifizierung von Genen f{\"u}hren, die an der fr{\"u}hen Entwicklung der Symbiose beteiligt sind und erkl{\"a}ren, warum nur eine kleine Gruppe von Pflanzen dazu in der Lage ist, eine RNS einzugehen, w{\"a}hrend die AM im Pflanzenreich weit verbreitet ist.}, subject = {Schneckenklee}, language = {de} }