@article{MoralesLozanoVieringSamnicketal.2020, author = {Morales-Lozano, Maria I. and Viering, Oliver and Samnick, Samuel and Rodriguez-Otero, Paula and Buck, Andreas K. and Marcos-Jubilar, Maria and Rasche, Leo and Prieto, Elena and Kort{\"u}m, K. Martin and San-Miguel, Jesus and Garcia-Velloso, Maria J. and Lapa, Constantin}, title = {\(^{18}\)F-FDG and \(^{11}\)C-methionine PET/CT in newly diagnosed multiple myeloma patients: comparison of volume-based PET biomarkers}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {4}, issn = {2072-6694}, doi = {10.3390/cancers12041042}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203686}, year = {2020}, abstract = {\(^{11}\)C-methionine (\(^{11}\)C-MET) is a new positron emission tomography (PET) tracer for the assessment of disease activity in multiple myeloma (MM) patients, with preliminary data suggesting higher sensitivity and specificity than \(^{18}\)F-fluorodeoxyglucose (\(^{18}\)F-FDG). However, the value of tumor burden biomarkers has yet to be investigated. Our goals were to corroborate the superiority of \(^{11}\)C-MET for MM staging and to compare its suitability for the assessment of metabolic tumor burden biomarkers in comparison to \(^{18}\)F-FDG. Twenty-two patients with newly diagnosed, treatment-na{\"i}ve symptomatic MM who had undergone \(^{11}\)C-MET and \(^{18}\)F-FDG PET/CT were evaluated. Standardized uptake values (SUV) were determined and compared with total metabolic tumor volume (TMTV) for both tracers: total lesion glycolysis (TLG) and total lesion \(^{11}\)C-MET uptake (TLMU). PET-derived values were compared to Revised International Staging System (R-ISS), cytogenetic, and serologic MM markers such as M component, beta 2 microglobulin (B2M), serum free light chains (FLC), albumin, and lactate dehydrogenase (LDH). In 11 patients (50\%), \(^{11}\)C-MET detected more focal lesions (FL) than FDG (p < 0.01). SUVmax, SUVmean, SUVpeak, TMTV, and TLMU were also significantly higher in \(^{11}\)C-MET than in \(^{18}\)F-FDG (p < 0.05, respectively). \(^{11}\)C-MET PET biomarkers had a better correlation with tumor burden (bone marrow plasma cell infiltration, M component; p < 0.05 versus p = n.s. respectively). This pilot study suggests that \(^{11}\)C-MET PET/CT is a more sensitive marker for the assessment of myeloma tumor burden than \(^{18}\)F-FDG. Its implications for prognosis evaluation need further investigation.}, language = {en} } @article{TranGiaDenisBacelarFerreiraetal.2021, author = {Tran-Gia, Johannes and Denis-Bacelar, Ana M. and Ferreira, Kelley M. and Robinson, Andrew P. and Calvert, Nicholas and Fenwick, Andrew J. and Finocchiaro, Domenico and Fioroni, Federica and Grassi, Elisa and Heetun, Warda and Jewitt, Stephanie J. and Kotzassarlidou, Maria and Ljungberg, Michael and McGowan, Daniel R. and Scott, Nathaniel and Scuffham, James and Gleisner, Katarina Sj{\"o}green and Tipping, Jill and Wevrett, Jill and Lassmann, Michael}, title = {A multicentre and multi-national evaluation of the accuracy of quantitative Lu-177 SPECT/CT imaging performed within the MRTDosimetry project}, series = {EJNMMI Physics}, volume = {8}, journal = {EJNMMI Physics}, doi = {10.1186/s40658-021-00397-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270380}, year = {2021}, abstract = {Purpose Patient-specific dosimetry is required to ensure the safety of molecular radiotherapy and to predict response. Dosimetry involves several steps, the first of which is the determination of the activity of the radiopharmaceutical taken up by an organ/lesion over time. As uncertainties propagate along each of the subsequent steps (integration of the time-activity curve, absorbed dose calculation), establishing a reliable activity quantification is essential. The MRTDosimetry project was a European initiative to bring together expertise in metrology and nuclear medicine research, with one main goal of standardizing quantitative \(^{177}\)Lu SPECT/CT imaging based on a calibration protocol developed and tested in a multicentre inter-comparison. This study presents the setup and results of this comparison exercise. Methods The inter-comparison included nine SPECT/CT systems. Each site performed a set of three measurements with the same setup (system, acquisition and reconstruction): (1) Determination of an image calibration for conversion from counts to activity concentration (large cylinder phantom), (2) determination of recovery coefficients for partial volume correction (IEC NEMA PET body phantom with sphere inserts), (3) validation of the established quantitative imaging setup using a 3D printed two-organ phantom (ICRP110-based kidney and spleen). In contrast to previous efforts, traceability of the activity measurement was required for each participant, and all participants were asked to calculate uncertainties for their SPECT-based activities. Results Similar combinations of imaging system and reconstruction lead to similar image calibration factors. The activity ratio results of the anthropomorphic phantom validation demonstrate significant harmonization of quantitative imaging performance between the sites with all sites falling within one standard deviation of the mean values for all inserts. Activity recovery was underestimated for total kidney, spleen, and kidney cortex, while it was overestimated for the medulla. Conclusion This international comparison exercise demonstrates that harmonization of quantitative SPECT/CT is feasible when following very specific instructions of a dedicated calibration protocol, as developed within the MRTDosimetry project. While quantitative imaging performance demonstrates significant harmonization, an over- and underestimation of the activity recovery highlights the limitations of any partial volume correction in the presence of spill-in and spill-out between two adjacent volumes of interests.}, language = {en} } @article{EisslerWernerAriasLozaetal.2021, author = {Eissler, Cristoph and Werner, Rudolf A. and Arias-Loza, Paula and Nose, Naoko and Chen, Xinyu and Pomper, Martin G. and Rowe, Steven P. and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro}, title = {The number of frames on ECG-gated \(^{18}\)F-FDG small animal PET has a significant impact on LV systolic and diastolic functional parameters}, series = {Molecular Imaging}, volume = {2021}, journal = {Molecular Imaging}, doi = {10.1155/2021/4629459}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265778}, year = {2021}, abstract = {Objectives. This study is aimed at investigating the impact of frame numbers in preclinical electrocardiogram- (ECG-) gated \(^{18}\)F-fluorodeoxyglucose (\(^{18}\)F-FDG) positron emission tomography (PET) on systolic and diastolic left ventricular (LV) parameters in rats. Methods. \(^{18}\)F-FDG PET imaging using a dedicated small animal PET system with list mode data acquisition and continuous ECG recording was performed in diabetic and control rats. The list-mode data was sorted and reconstructed with different numbers of frames (4, 8, 12, and 16) per cardiac cycle into tomographic images. Using an automatic ventricular edge detection software, left ventricular (LV) functional parameters, including ejection fraction (EF), end-diastolic (EDV), and end-systolic volume (ESV), were calculated. Diastolic variables (time to peak filling (TPF), first third mean filling rate (1/3 FR), and peak filling rate (PFR)) were also assessed. Results. Significant differences in multiple parameters were observed among the reconstructions with different frames per cardiac cycle. EDV significantly increased by numbers of frames (353.8 \& PLUSMN; 57.7 mu l*, 380.8 \& PLUSMN; 57.2 mu l*, 398.0 \& PLUSMN; 63.1 mu l*, and 444.8 \& PLUSMN; 75.3 mu l at 4, 8, 12, and 16 frames, respectively; *P < 0.0001 vs. 16 frames), while systolic (EF) and diastolic (TPF, 1/3 FR and PFR) parameters were not significantly different between 12 and 16 frames. In addition, significant differences between diabetic and control animals in 1/3 FR and PFR in 16 frames per cardiac cycle were observed (P < 0.005), but not for 4, 8, and 12 frames. Conclusions. Using ECG-gated PET in rats, measurements of cardiac function are significantly affected by the frames per cardiac cycle. Therefore, if you are going to compare those functional parameters, a consistent number of frames should be used.}, language = {en} } @article{ScherthanLeeMausetal.2019, author = {Scherthan, Harry and Lee, Jin-Ho and Maus, Emanuel and Schumann, Sarah and Muhtadi, Razan and Chojowski, Robert and Port, Matthias and Lassmann, Michael and Bestvater, Felix and Hausmann, Michael}, title = {Nanostructure of clustered DNA damage in leukocytes after in-solution irradiation with the alpha emitter Ra-223}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {12}, issn = {2072-6694}, doi = {10.3390/cancers11121877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193038}, year = {2019}, abstract = {Background: Cancer patients are increasingly treated with alpha-particle-emitting radiopharmaceuticals. At the subcellular level, alpha particles induce densely spaced ionizations and molecular damage. Induction of DNA lesions, especially clustered DNA double-strand breaks (DSBs), threatens a cell's survival. Currently, it is under debate to what extent the spatial topology of the damaged chromatin regions and the repair protein arrangements are contributing. Methods: Super-resolution light microscopy (SMLM) in combination with cluster analysis of single molecule signal-point density regions of DSB repair markers was applied to investigate the nano-structure of DNA damage foci tracks of Ra-223 in-solution irradiated leukocytes. Results: Alpha-damaged chromatin tracks were efficiently outlined by γ-H2AX that formed large (super) foci composed of numerous 60-80 nm-sized nano-foci. Alpha damage tracks contained 60-70\% of all γ-H2AX point signals in a nucleus, while less than 30\% of 53BP1, MRE11 or p-ATM signals were located inside γ-H2AX damage tracks. MRE11 and p-ATM protein fluorescent tags formed focal nano-clusters of about 20 nm peak size. There were, on average, 12 (±9) MRE11 nanoclusters in a typical γ-H2AX-marked alpha track, suggesting a minimal number of MRE11-processed DSBs per track. Our SMLM data suggest regularly arranged nano-structures during DNA repair in the damaged chromatin domain.}, language = {en} } @article{AertsEberleinHolmetal.2021, author = {Aerts, An and Eberlein, Uta and Holm, S{\"o}ren and Hustinx, Roland and Konijnenberg, Mark and Strigari, Lidia and van Leeuwen, Fijs W. B. and Glatting, Gerhard and Lassmann, Michael}, title = {EANM position paper on the role of radiobiology in nuclear medicine}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {48}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {11}, doi = {10.1007/s00259-021-05345-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265595}, pages = {3365-3377}, year = {2021}, abstract = {With an increasing variety of radiopharmaceuticals for diagnostic or therapeutic nuclear medicine as valuable diagnostic or treatment option, radiobiology plays an important role in supporting optimizations. This comprises particularly safety and efficacy of radionuclide therapies, specifically tailored to each patient. As absorbed dose rates and absorbed dose distributions in space and time are very different between external irradiation and systemic radionuclide exposure, distinct radiation-induced biological responses are expected in nuclear medicine, which need to be explored. This calls for a dedicated nuclear medicine radiobiology. Radiobiology findings and absorbed dose measurements will enable an improved estimation and prediction of efficacy and adverse effects. Moreover, a better understanding on the fundamental biological mechanisms underlying tumor and normal tissue responses will help to identify predictive and prognostic biomarkers as well as biomarkers for treatment follow-up. In addition, radiobiology can form the basis for the development of radiosensitizing strategies and radioprotectant agents. Thus, EANM believes that, beyond in vitro and preclinical evaluations, radiobiology will bring important added value to clinical studies and to clinical teams. Therefore, EANM strongly supports active collaboration between radiochemists, radiopharmacists, radiobiologists, medical physicists, and physicians to foster research toward precision nuclear medicine.}, language = {en} } @article{NoseNogamiKoshinoetal.2021, author = {Nose, Naoko and Nogami, Suguru and Koshino, Kazuhiro and Chen, Xinyu and Werner, Rudolf A. and Kashima, Soki and Rowe, Steven P. and Lapa, Constantin and Fukuchi, Kazuki and Higuchi, Takahiro}, title = {[18F]FDG-labelled stem cell PET imaging in different route of administrations and multiple animal species}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-90383-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260590}, year = {2021}, abstract = {Stem cell therapy holds great promise for tissue regeneration and cancer treatment, although its efficacy is still inconclusive and requires further understanding and optimization of the procedures. Non-invasive cell tracking can provide an important opportunity to monitor in vivo cell distribution in living subjects. Here, using a combination of positron emission tomography (PET) and in vitro 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) direct cell labelling, the feasibility of engrafted stem cell monitoring was tested in multiple animal species. Human mesenchymal stem cells (MSCs) were incubated with phosphate-buffered saline containing [18F]FDG for in vitro cell radiolabelling. The pre-labelled MSCs were administrated via peripheral vein in a mouse (n=1), rats (n=4), rabbits (n=4) and non-human primates (n=3), via carotid artery in rats (n=4) and non-human primates (n=3), and via intra-myocardial injection in rats (n=5). PET imaging was started 10 min after cell administration using a dedicated small animal PET system for a mouse and rats. A clinical PET system was used for the imaging of rabbits and non-human primates. After MSC administration via peripheral vein, PET imaging revealed intense radiotracer signal from the lung in all tested animal species including mouse, rat, rabbit, and non-human primate, suggesting administrated MSCs were trapped in the lung tissue. Furthermore, the distribution of the PET signal significantly differed based on the route of cell administration. Administration via carotid artery showed the highest activity in the head, and intra-myocardial injection increased signal from the heart. In vitro [18F]FDG MSC pre-labelling for PET imaging is feasible and allows non-invasive visualization of initial cell distribution after different routes of cell administration in multiple animal models. Those results highlight the potential use of that imaging approach for the understanding and optimization of stem cell therapy in translational research.}, language = {en} } @article{ToyamaWernerRuizBedoyaetal.2021, author = {Toyama, Yoshitaka and Werner, Rudolf A. and Ruiz-Bedoya, Camilo A. and Ordonez, Alvaro A. and Takase, Kei and Lapa, Constantin and Jain, Sanjay K. and Pomper, Martin G. and Rowe, Steven P. and Higuchi, Takahiro}, title = {Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon}, series = {Theranostics}, volume = {11}, journal = {Theranostics}, number = {12}, doi = {10.7150/thno.58682}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260090}, pages = {6105-6119}, year = {2021}, abstract = {In recent years, a paradigm shift from single-photon-emitting radionuclide radiotracers toward positron-emission tomography (PET) radiotracers has occurred in nuclear oncology. Although PET-based molecular imaging of the kidneys is still in its infancy, such a trend has emerged in the field of functional renal radionuclide imaging. Potentially allowing for precise and thorough evaluation of renal radiotracer urodynamics, PET radionuclide imaging has numerous advantages including precise anatomical co-registration with CT images and dynamic three-dimensional imaging capability. In addition, relative to scintigraphic approaches, PET can allow for significantly reduced scan time enabling high-throughput in a busy PET practice and further reduces radiation exposure, which may have a clinical impact in pediatric populations. In recent years, multiple renal PET radiotracers labeled with C-11, Ga-68, and F-18 have been utilized in clinical studies. Beyond providing a precise non-invasive read-out of renal function, such radiotracers may also be used to assess renal inflammation. This manuscript will provide an overview of renal molecular PET imaging and will highlight the transformation of conventional scintigraphy of the kidneys toward novel, high-resolution PET imaging for assessing renal function. In addition, future applications will be introduced, e.g. by transferring the concept of molecular image-guided diagnostics and therapy (theranostics) to the field of nephrology.}, language = {en} } @article{BrumbergKuzkinaLapaetal.2021, author = {Brumberg, Joachim and Kuzkina, Anastasia and Lapa, Constantin and Mammadova, Sona and Buck, Andreas and Volkmann, Jens and Sommer, Claudia and Isaias, Ioannis U. and Doppler, Kathrin}, title = {Dermal and cardiac autonomic fiber involvement in Parkinson's disease and multiple system atrophy}, series = {Neurobiology of Disease}, volume = {153}, journal = {Neurobiology of Disease}, doi = {10.1016/j.nbd.2021.105332}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260061}, pages = {105332}, year = {2021}, abstract = {Pathological aggregates of alpha-synuclein in peripheral dermal nerve fibers can be detected in patients with idiopathic Parkinson's disease and multiple system atrophy. This study combines skin biopsy staining for p-alpha-synuclein depositions and radionuclide imaging of the heart with [\(^{123}\)I]-metaiodobenzylguanidine to explore peripheral denervation in both diseases. To this purpose, 42 patients with a clinical diagnosis of Parkinson's disease or multiple system atrophy were enrolled. All patients underwent a standardized clinical workup including neurological evaluation, neurography, and blood samples. Skin biopsies were obtained from the distal and proximal leg, back, and neck for immunofluorescence double labeling with anti-p-alpha-synuclein and anti-PGP9.5. All patients underwent myocardial [\(^{123}\)I]-metaiodobenzylguanidine scintigraphy. Dermal p-alpha-synuclein was observed in 47.6\% of Parkinson's disease patients and was mainly found in autonomic structures. 81.0\% of multiple system atrophy patients had deposits with most of cases in somatosensory fibers. The [\(^{123}\)I]-metaiodobenzylguanidine heart-to-mediastinum ratio was lower in Parkinson's disease than in multiple system atrophy patients (1.94 +/- 0.63 vs. 2.91 +/- 0.96; p < 0.0001). Irrespective of the diagnosis, uptake was lower in patients with than without p-alpha-synuclein in autonomic structures (1.42 +/- 0.51 vs. 2.74 +/- 0.83; p < 0.0001). Rare cases of Parkinson's disease with p-alpha-synuclein in somatosensory fibers and multiple system atrophy patients with deposits in autonomic structures or both fiber types presented with clinically overlapping features. In conclusion, this study suggests that alpha-synuclein contributes to peripheral neurodegeneration and mediates the impairment of cardiac sympathetic neurons in patients with synucleinopathies. Furthermore, it indicates that Parkinson's disease and multiple system atrophy share pathophysiologic mechanisms of peripheral nervous system dysfunction with a clinical overlap.}, language = {en} } @article{SchumannScherthanPfestroffetal.2021, author = {Schumann, S. and Scherthan, H. and Pfestroff, K. and Schoof, S. and Pfestroff, A. and Hartrampf, P. and Hasenauer, N. and Buck, A. K. and Luster, M. and Port, M. and Lassmann, M. and Eberlein, U.}, title = {DNA damage and repair in peripheral blood mononuclear cells after internal ex vivo irradiation of patient blood with \(^{131}\)I}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, doi = {10.1007/s00259-021-05605-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258863}, year = {2021}, abstract = {Aim The aim of this study was to provide a systematic approach to characterize DNA damage induction and repair in isolated peripheral blood mononuclear cells (PBMCs) after internal ex vivo irradiation with [\(^{131}\)I]NaI. In this approach, we tried to mimic ex vivo the irradiation of patient blood in the first hours after radioiodine therapy. Material and methods Blood of 33 patients of two centres was collected immediately before radioiodine therapy of differentiated thyroid cancer (DTC) and split into two samples. One sample served as non-irradiated control. The second sample was exposed to ionizing radiation by adding 1 ml of [\(^{131}\)I]NaI solution to 7 ml of blood, followed by incubation at 37 °C for 1 h. PBMCs of both samples were isolated, split in three parts each and (i) fixed in 70\% ethanol and stored at - 20 °C directly (0 h) after irradiation, (ii) after 4 h and (iii) 24 h after irradiation and culture in RPMI medium. After immunofluorescence staining microscopically visible co-localizing γ-H2AX + 53BP1 foci were scored in 100 cells per sample as biomarkers for radiation-induced double-strand breaks (DSBs). Results Thirty-two of 33 blood samples could be analysed. The mean absorbed dose to the blood in all irradiated samples was 50.1 ± 2.3 mGy. For all time points (0 h, 4 h, 24 h), the average number of γ-H2AX + 53BP1 foci per cell was significantly different when compared to baseline and the other time points. The average number of radiation-induced foci (RIF) per cell after irradiation was 0.72 ± 0.16 at t = 0 h, 0.26 ± 0.09 at t = 4 h and 0.04 ± 0.09 at t = 24 h. A monoexponential fit of the mean values of the three time points provided a decay rate of 0.25 ± 0.05 h\(^{-1}\), which is in good agreement with data obtained from external irradiation with γ- or X-rays. Conclusion This study provides novel data about the ex vivo DSB repair in internally irradiated PBMCs of patients before radionuclide therapy. Our findings show, in a large patient sample, that efficient repair occurs after internal irradiation with 50 mGy absorbed dose, and that the induction and repair rate after \(^{131}\)I exposure is comparable to that of external irradiation with γ- or X-rays.}, language = {en} } @article{SchadtIsraelSamnick2021, author = {Schadt, Fabian and Israel, Ina and Samnick, Samuel}, title = {Development and Validation of a Semi-Automated, Preclinical, MRI-Template Based PET Image Data Analysis Tool for Rodents}, series = {Frontiers in Neuroinformatics}, volume = {15}, journal = {Frontiers in Neuroinformatics}, issn = {1662-5196}, doi = {10.3389/fninf.2021.639643}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240289}, year = {2021}, abstract = {AimIn PET imaging, the different types of radiotracers and accumulations, as well as the diversity of disease patterns, make the analysis of molecular imaging data acquired in vivo challenging. Here, we evaluate and validate a semi-automated MRI template-based data analysis tool that allows preclinical PET images to be aligned to a self-created PET template. Based on the user-defined volume-of-interest (VOI), image data can then be evaluated using three different semi-quantitative parameters: normalized activity, standardized uptake value, and uptake ratio. Materials and MethodsThe nuclear medicine Data Processing Analysis tool (NU_DPA) was implemented in Matlab. Testing and validation of the tool was performed using two types of radiotracers in different kinds of stroke-related brain diseases in rat models. The radiotracers used are 2-[\(^{18}\)F]fluoro-2-deoxyglucose ([\(^{18}\)F]FDG), a metabol\(^{68}\)Ga]Ga-Fucoidan, a target-selective radioligand specifically binding to p-selectin. After manual image import, the NU_DPA tool automatically creates an averaged PET template out of the acquired PET images, to which all PET images are then aligned onto. The added MRI template-based information, resized to the lower PET resolution, defines the VOI and also allows a precise subdivision of the VOI into individual sub-regions. The aligned PET images can then be evaluated semi-quantitatively for all regions defined in the MRI atlas. In addition, a statistical analysis and evaluation of the semi-quantitative parameters can then be performed in the NU_DPA tool. ResultsUsing ischemic stroke data in Wistar rats as an example, the statistical analysis of the tool should be demonstrated. In this [\(^{18}\)F]FDG-PET experiment, three different experimental states were compared: healthy control state, ischemic stroke without electrical stimulation, ischemic stroke with electrical stimulation. Thereby, statistical data evaluation using the NU_DPA tool showed that the glucose metabolism in a photothrombotic lesion can be influenced by electrical stimulation. ConclusionOur NU_DPA tool allows a very flexible data evaluation of small animal PET data in vivo including statistical data evaluation. Using the radiotracers [\(^{18}\)F]FDG and [\(^{68}\)Ga]Ga-Fucoidan, it was shown that the semi-automatic MRI-template based data analysis of the NU_DPA tool is potentially suitable for both metabolic radiotracers as well as target-selective radiotracers.}, language = {en} } @article{LenschowFussKircheretal.2021, author = {Lenschow, Christina and Fuss, Carmina Teresa and Kircher, Stefan and Buck, Andreas and Kickuth, Ralph and Reibetanz, Joachim and Wiegering, Armin and Stenzinger, Albrecht and H{\"u}bschmann, Daniel and Germer, Christoph Thomas and Fassnacht, Martin and Fr{\"o}hling, Stefan and Schlegel, Nicolas and Kroiss, Matthias}, title = {Case Report: Abdominal Lymph Node Metastases of Parathyroid Carcinoma: Diagnostic Workup, Molecular Diagnosis, and Clinical Management}, series = {Frontiers in Endocrinology}, volume = {12}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2021.643328}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233362}, year = {2021}, abstract = {Parathyroid carcinoma (PC) is an orphan malignancy accounting for only ~1\% of all cases with primary hyperparathyroidism. The localization of recurrent PC is of critical importance and can be exceedingly difficult to diagnose and sometimes futile when common sites of recurrence in the neck and chest cannot be confirmed. Here, we present the diagnostic workup, molecular analysis and multimodal therapy of a 46-year old woman with the extraordinary manifestation of abdominal lymph node metastases 12 years after primary diagnosis of PC. The patient was referred to our endocrine tumor center in 2016 with the aim to localize the tumor causative of symptomatic biochemical recurrence. In view of the extensive previous workup we decided to perform [18F]FDG-PET-CT. A pathological lymph node in the liver hilus showed slightly increased FDG-uptake and hence was suspected as site of recurrence. Selective venous sampling confirmed increased parathyroid hormone concentration in liver veins. Abdominal lymph node metastasis was resected and histopathological examination confirmed PC. Within four months, the patient experienced biochemical recurrence and based on high tumor mutational burden detected in the surgical specimen by whole exome sequencing the patient received immunotherapy with pembrolizumab that led to a biochemical response. Subsequent to disease progression repeated abdominal lymph node resection was performed in 10/2018, 01/2019 and in 01/2020. Up to now (12/2020) the patient is biochemically free of disease. In conclusion, a multimodal diagnostic approach and therapy in an interdisciplinary setting is needed for patients with rare endocrine tumors. Molecular analyses may inform additional treatment options including checkpoint inhibitors such as pembrolizumab.}, language = {en} } @article{FroehlichSerflingHiguchietal.2021, author = {Fr{\"o}hlich, Matthias and Serfling, Sebastian and Higuchi, Takahiro and Pomper, Martin G. and Rowe, Steven P. and Schmalzing, Marc and Tony, Hans-Peter and Gernert, Michael and Strunz, Patrick-Pascal and Portegys, Jan and Schwaneck, Eva-Christina and Gadeholt, Ottar and Weich, Alexander and Buck, Andreas K. and Bley, Thorsten A. and Guggenberger, Konstanze V. and Werner, Rudolf A.}, title = {Whole-Body [\(^{18}\)F]FDG PET/CT Can Alter Diagnosis in Patients with Suspected Rheumatic Disease}, series = {Diagnostics}, volume = {11}, journal = {Diagnostics}, number = {11}, issn = {2075-4418}, doi = {10.3390/diagnostics11112073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250227}, year = {2021}, abstract = {The 2-deoxy-d-[\(^{18}\)F]fluoro-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT) is widely utilized to assess the vascular and articular inflammatory burden of patients with a suspected diagnosis of rheumatic disease. We aimed to elucidate the impact of [\(^{18}\)F]FDG PET/CT on change in initially suspected diagnosis in patients at the time of the scan. Thirty-four patients, who had undergone [\(^{18}\)F]FDG PET/CT, were enrolled and the initially suspected diagnosis prior to [18F]FDG PET/CT was compared to the final diagnosis. In addition, a semi-quantitative analysis including vessel wall-to-liver (VLR) and joint-to-liver (JLR) ratios was also conducted. Prior to [\(^{18}\)F]FDG PET/CT, 22/34 (64.7\%) of patients did not have an established diagnosis, whereas in 7/34 (20.6\%), polymyalgia rheumatica (PMR) was suspected, and in 5/34 (14.7\%), giant cell arteritis (GCA) was suspected by the referring rheumatologists. After [\(^{18}\)F]FDG PET/CT, the diagnosis was GCA in 19/34 (55.9\%), combined GCA and PMR (GCA + PMR) in 9/34 (26.5\%) and PMR in the remaining 6/34 (17.6\%). As such, [\(^{18}\)F]FDG PET/CT altered suspected diagnosis in 28/34 (82.4\%), including in all unclear cases. VLR of patients whose final diagnosis was GCA tended to be significantly higher when compared to VLR in PMR (GCA, 1.01 ± 0.08 (95\%CI, 0.95-1.1) vs. PMR, 0.92 ± 0.1 (95\%CI, 0.85-0.99), p = 0.07), but not when compared to PMR + GCA (1.04 ± 0.14 (95\%CI, 0.95-1.13), p = 1). JLR of individuals finally diagnosed with PMR (0.94 ± 0.16, (95\%CI, 0.83-1.06)), however, was significantly increased relative to JLR in GCA (0.58 ± 0.04 (95\%CI, 0.55-0.61)) and GCA + PMR (0.64 ± 0.09 (95\%CI, 0.57-0.71); p < 0.0001, respectively). In individuals with a suspected diagnosis of rheumatic disease, an inflammatory-directed [\(^{18}\)F]FDG PET/CT can alter diagnosis in the majority of the cases, particularly in subjects who were referred because of diagnostic uncertainty. Semi-quantitative assessment may be helpful in establishing a final diagnosis of PMR, supporting the notion that a quantitative whole-body read-out may be useful in unclear cases.}, language = {en} } @article{LindnerGieselKratochwiletal.2021, author = {Lindner, Thomas and Giesel, Frederik L. and Kratochwil, Clemens and Serfling, Sebastian E.}, title = {Radioligands Targeting Fibroblast Activation Protein (FAP)}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {22}, issn = {2072-6694}, doi = {10.3390/cancers13225744}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250121}, year = {2021}, abstract = {Simple Summary FAP-targeted radiotracers, recently introduced in cancer treatment, accumulate in Cancer-Associated Fibroblasts (CAFs). CAFs are present in tumor lesions but do not correspond to genuine cancer cells, although they behave in an abnormal and disease-promoting manner. One of their characteristic features, the expression of the surface protein FAP, can be utilized to discriminate between cancerous and healthy tissues. By the choice of an appropriate radionuclide, FAP-targeted tracers can be used for imaging or therapy in many cancer types. Therefore, the first successful application of FAP-targeted imaging has led to an enormous and growing interest in nuclear medicine and radiopharmacy. Abstract Targeting fibroblast activation protein (FAP) in cancer-associated fibroblasts (CAFs) has attracted significant attention in nuclear medicine. Since these cells are present in most cancerous tissues and FAP is rarely expressed in healthy tissues, anti-FAP tracers have a potential as pan-tumor agents. Compared to the standard tumor tracer [\(^{18}\)F]FDG, these tracers show better tumor-to-background ratios (TBR) in many indications. Unlike [\(^{18}\)F]FDG, FAP-targeted tracers do not require exhausting preparations, such as dietary restrictions on the part of the patient, and offer the possibility of radioligand therapy (RLT) in a theragnostic approach. Although a radiolabeled antibody was clinically investigated as early as the 1990s, the breakthrough event for FAP-targeting in nuclear medicine was the introduction and clinical application of the so-called FAPI-tracers in 2018. From then, the development and application of FAP-targeted tracers became hot topics for the radiopharmaceutical and nuclear medicine community, and attracted the interest of pharmaceutical companies. The aim of this review is to provide a comprehensive overview of the development of FAP-targeted radiopharmaceuticals and their application in nuclear medicine.}, language = {en} } @phdthesis{Schumann2022, author = {Schumann, Sarah}, title = {Zeit- und Dosisabh{\"a}ngigkeit von DNA-Sch{\"a}den induziert durch interne Bestrahlung mit unterschiedlichen Radionukliden}, doi = {10.25972/OPUS-22390}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223904}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In der Nuklearmedizin werden radioaktive Substanzen eingesetzt, um zu therapeutischen Zwecken gezielt b{\"o}sartiges Gewebe zu zerst{\"o}ren oder in diagnostischen Anwendungen Stoffwechselvorg{\"a}nge bildlich darzustellen. Die ionisierende Strahlung der eingesetzten Radionuklide kann jedoch auch DNA-Sch{\"a}den in gesunden Zellen verursachen. DNA-Doppelstrangbr{\"u}che geh{\"o}ren dabei zu den kritischsten L{\"a}sionen, da sie schwer zu reparieren sind und eine fehlerhafte Reparatur zu Mutationen oder zum Zelltod f{\"u}hren kann. W{\"a}hrend Radionuklidtherapien ist daher in Risikoorganen darauf zu achten, dass die deponierte Energie pro Masse, die Energiedosis, bestimmte Werte nicht {\"u}berschreitet. Zu diesen Risikoorganen geh{\"o}rt auch das blutbildende System. Da eine Absch{\"a}tzung der Energiedosis im Knochenmark h{\"a}ufig {\"u}ber die Bestimmung der Energiedosis im Blut als Surrogat erfolgt, ist deren Kenntnis von besonderem Interesse. In dieser Arbeit wurden daher Berechnungen der Energiedosis im Blut nach interner Bestrahlung durchgef{\"u}hrt und die Ergebnisse mit der Anzahl an strahlungsinduzierten DNA-Doppelstrangbr{\"u}chen in PBMCs korreliert. Zur Quantifizierung der DNA-Sch{\"a}den wurden die Biomarker \(\gamma\)-H2AX und 53BP1 verwendet, die nach Entstehung eines Doppelstrangbruchs um diesen akkumulieren und sich durch Immunfluoreszenzf{\"a}rbung als mikroskopische Foci sichtbar machen und quantifizieren lassen. Dadurch erm{\"o}glicht der \(\gamma\)-H2AX+53BP1-Assay einen quantitativen Nachweis strahlungsinduzierter Doppelstrangbr{\"u}che. Somit konnten im Rahmen dieser Arbeit neue Kenntnisse {\"u}ber die Dosisabh{\"a}ngigkeit von DNA-Sch{\"a}den in PBMCs w{\"a}hrend interner Bestrahlung mit unterschiedlichen Radionukliden sowohl ex vivo als auch in vivo gewonnen werden. Ex-vivo-Untersuchungen haben den Vorteil, dass sie unter gleichbleibenden, gut definierten Bedingungen durchgef{\"u}hrt werden k{\"o}nnen und somit eine Analyse der Induktion von Doppelstrangbr{\"u}chen bei festgelegten Energiedosen und einer konstanten Bestrahlungsdauer erlauben. In dieser Arbeit wurden Blutproben von gesunden Versuchspersonen durch Zugabe von Radionukliden in bestimmten Aktivit{\"a}tskonzentrationen eine Stunde lang intern bestrahlt. F{\"u}r die Bestrahlung wurden die \(\alpha\)-Emitter \(^{223}\)Ra und \(^{224}\)Ra, die \(\beta\)\(^{-}\)-Emitter \(^{177}\)Lu und \(^{90}\)Y, der \(\beta\)\(^{+}\)-Emitter \(^{68}\)Ga und der \(\gamma\)-Emitter \(^{99m}\)Tc verwendet. Der untersuchte Energiedosisbereich lag zwischen 5 mGy und 136 mGy. Nach der Bestrahlung von Blutproben mit \(\beta\)- beziehungsweise \(\gamma\)-Emittern wurde beobachtet, dass die Anzahl der strahlungsinduzierten \(\gamma\)-H2AX+53BP1-Foci (RIF) in den PBMCs linear mit der Energiedosis im Blut ansteigt. Zudem zeigte sich, dass die Induktion der RIF unabh{\"a}ngig vom verwendeten Radionuklid und unabh{\"a}ngig von der Versuchsperson ist. Nach der Bestrahlung von Blutproben mit \(\alpha\)-Emittern waren zus{\"a}tzlich zu den nach Expositionen mit \(\beta\)- beziehungsweise \(\gamma\)-Emittern beobachteten kleinen, runden Foci auch \(\gamma\)-H2AX+53BP1 enthaltende Spuren \(\alpha\)-Spuren) in den Zellkernen erkennbar, welche die Trajektorien der emittierten \(\alpha\)-Teilchen darstellten. Es konnte gezeigt werden, dass die Anzahl dieser \(\alpha\)-Spuren linear mit der Energiedosis im Blut zunimmt und damit ein geeigneter Parameter f{\"u}r die Biodosimetrie nach Expositionen mit \(\alpha\)-emittierenden Radionukliden ist. Auch in vivo wurde die Dosisabh{\"a}ngigkeit der DNA-Doppelstrangbr{\"u}che w{\"a}hrend der internen Bestrahlung durch Radionuklide mit unterschiedlichen Emissionseigenschaften untersucht. Aufgrund der neuen, vielversprechenden Entwicklungen von Radiopharmaka zur Therapie und Diagnostik des Prostatakarzinoms in den letzten Jahren wurden daf{\"u}r Blutproben von Prostatakarzinom-Patienten w{\"a}hrend Therapie mit [\(^{177}\)Lu]Lu-PSMA I\&T, w{\"a}hrend PET/CT-Diagnostik mit [\(^{68}\)Ga]Ga-PSMA I\&T und w{\"a}hrend Therapie mit [\(^{223}\)Ra]RaCl\(_2\) untersucht. W{\"a}hrend Therapie mit [\(^{177}\)Lu]Lu-PSMA I\&T zeigte sich, dass die Anzahl der RIF in den ersten Stunden nach Therapiebeginn durch eine lineare Anpassungskurve angen{\"a}hert werden kann, die mit der Energiedosis im Blut ansteigt, gefolgt von einem R{\"u}ckgang der RIF zu sp{\"a}teren Zeitpunkten, der durch die DNA-Reparatur erkl{\"a}rt werden kann. Die gesamte Energiedosis im Blut lag im Mittel bei (109 \(\pm\) 28) mGy. Der linear dosisabh{\"a}ngige Anstieg der RIF zu Therapiebeginn gleicht der dosisabh{\"a}ngigen Induktion der RIF ex vivo nach Bestrahlung mit \(\beta\)- und \(\gamma\)-emittierenden Radionukliden und kann gut mit der entsprechenden Ex-vivo-Kalibrierkurve beschrieben werden. Zu sp{\"a}teren Zeitpunkten (48 h und 96 h nach Verabreichung) konnte in dieser Arbeit eine lineare Korrelation zwischen der Anzahl der noch verbleibenden RIF und der Dosisleistung nachgewiesen werden. Eine signifikante Korrelation der Anzahl der RIF 96 h nach Verabreichung mit dem PSA-Wert deutet zudem darauf hin, dass ein Zusammenhang mit klinischen Parametern besteht. Ein signifikanter Anstieg der \(\gamma\)-H2AX+53BP1-Foci konnte auch nach Verabreichung von [\(^{68}\)Ga]Ga-PSMA I\&T f{\"u}r diagnostische PET/CT-Untersuchungen beobachtet werden, obwohl die Energiedosen im Blut bis zum PET/CT-Scan nur < 3 mGy betrugen. Im Vergleich zur Ex-vivo-Kalibrierkurve war die Steigung der linearen Anpassungskurve in vivo im Bereich < 3 mGy in dieser Studie etwa um ein Zehnfaches h{\"o}her, was auf eine m{\"o}gliche Hypersensitivit{\"a}t im Niedrigdosisbereich hindeuten k{\"o}nnte. Der Beitrag der CT zur Energiedosis im Blut konnte durch Ex-vivo-Experimente auf etwa 12 mGy abgesch{\"a}tzt werden. Auch w{\"a}hrend Therapie mit [\(^{223}\)Ra]RaCl\(_2\) lagen die berechneten Energiedosen im Blut im Niedrigdosisbereich < 17 mGy. Trotzdem konnten in dieser Studie erstmalig \(\alpha\)-Spuren in vivo nach der Verabreichung eines \(\alpha\)-emittierenden Radionuklids quantifiziert werden, deren Anzahl 3 h und 4 h nach Verabreichung des Radiopharmakons signifikant erh{\"o}ht war. Auch zu sp{\"a}ten Zeitpunkten, bis vier Wochen nach Therapiebeginn, waren noch \(\alpha\)-Spuren nachweisbar, was auf eine unvollst{\"a}ndige Reparatur der komplexen, durch die \(\alpha\)-Teilchen induzierten DNA-Sch{\"a}den hinweisen k{\"o}nnte. Leider erlaubte die geringe Anzahl an Patienten und Datenpunkten keine zuverl{\"a}ssigen Korrelationen mit der Energiedosis oder mit klinischen Parametern. Nachdem in dieser Arbeit gezeigt werden konnte, dass DNA-Sch{\"a}den nach interner Bestrahlung mit \(\alpha\)-, \(\beta\)- und \(\gamma\)-emittierenden Radionukliden mit Hilfe des \(\gamma\)-H2AX+53BP1-Assays zuverl{\"a}ssig nachgewiesen und anhand der Schadensgeometrie unterschieden werden k{\"o}nnen, w{\"a}re es in Zukunft interessant, DNA-Sch{\"a}den auch nach Bestrahlung mit Radionuklidgemischen zu untersuchen. Dies k{\"o}nnte sowohl im Hinblick auf den Nachweis von Inkorporationen bei Strahlenunf{\"a}llen hilfreich sein als auch zu einem besseren Verst{\"a}ndnis der Effekte bei Behandlungen mit Radionuklidgemischen beitragen, welche vielversprechende M{\"o}glichkeiten f{\"u}r nuklearmedizinische Therapien bieten. Zudem zeigen die Ergebnisse dieser Arbeit, dass insbesondere im f{\"u}r die Diagnostik relevanten Bereich sehr niedriger Energiedosen < 10 mGy weiterer Forschungsbedarf besteht. Durch die Untersuchung der dosisabh{\"a}ngigen Reparatur der durch interne Bestrahlung induzierten DNA-Sch{\"a}den k{\"o}nnte beispielsweise analysiert werden, ob die Reparaturf{\"a}higkeit im Niedrigdosisbereich eingeschr{\"a}nkt ist. Außerdem w{\"a}re es gerade im Bereich niedriger Dosen von Interesse, zu untersuchen, inwiefern Beobachtungen ex vivo das Verhalten in vivo geeignet repr{\"a}sentieren. Um die erh{\"o}hten statistischen Unsicherheiten im Niedrigdosisbereich zu reduzieren, k{\"o}nnten zuk{\"u}nftig Verbesserungen auf dem Gebiet der automatisierten Auswertung der \(\gamma\)-H2AX+53BP1 enthaltenden Foci und Spuren hilfreich sein. Weitere Ziele zuk{\"u}nftiger Forschungsvorhaben k{\"o}nnten gezielte Untersuchungen zu Korrelationen zwischen der dosisabh{\"a}ngigen Induktion und Reparatur von DNA-Sch{\"a}den und klinischen Parametern sowie die Analyse von DNA-Sch{\"a}den w{\"a}hrend mehrerer Therapiezyklen darstellen. In Zusammenhang mit der Analyse klinischer Parameter w{\"a}re es denkbar, dass biodosimetrische Auswertungen zuk{\"u}nftig auch zur personalisierten Therapieplanung oder auch zur Vorhersage des Therapieerfolgs dienen und somit langfristig zu einer Optimierung nuklearmedizinischer Therapien beitragen k{\"o}nnten.}, subject = {Nuklearmedizin}, language = {de} } @article{HartrampfLapaSerflingetal.2021, author = {Hartrampf, Philipp E. and Lapa, Constantin and Serfling, Sebastian E. and Buck, Andreas K. and Seitz, Anna Katharina and Meyer, Philipp T. and Ruf, Juri and Michalski, Kerstin}, title = {Development of Discordant Hypermetabolic Prostate Cancer Lesions in the Course of [\(^{177}\)Lu]PSMA Radioligand Therapy and Their Possible Influence on Patient Outcome}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {17}, issn = {2072-6694}, doi = {10.3390/cancers13174270}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245168}, year = {2021}, abstract = {Simple Summary Discordant FDG-positive but PSMA-negative (FDG+/PSMA-) metastases constitute a negative prognostic marker of overall survival in patients undergoing PSMA radioligand therapy (RLT). The aim of this analysis was to investigate the prognostic implications of new FDG+/PSMA- lesions, which occur during or after PSMA RLT. In a retrospective bicentric analysis of 32 patients undergoing PSMA RLT and follow-up dual tracer staging with PSMA and FDG PET/CT, FDG+/PSMA- lesions occurred in a limited number of patients. However, the presence of FDG+/PSMA- lesions appears not to have a significant impact on the OS, but further studies are needed to establish the clinical relevance of such lesions. Abstract Introduction: Positron emission tomography/computer tomography (PET/CT) targeting the prostate-specific membrane antigen (PSMA) is crucial for the assessment of adequate PSMA expression in patients with metastatic castration-resistant prostate cancer (mCRPC) prior to PSMA radioligand therapy (PSMA RLT). Moreover, initial dual tracer staging using combined PSMA and [\(^{18}\)F]fluorodeoxyglucose (FDG) PET/CT provides relevant information, since discordant FDG-positive but PSMA-negative (FDG+/PSMA-) lesions constitute a negative prognostic marker of overall survival (OS) after PSMA RLT. However, little is known about the prognostic implications of dual tracer imaging for restaging at follow-up. The aim of this analysis was to investigate the prognostic implications of new FDG+/PSMA- lesions during or after PSMA RLT. Methods: This bicentric analysis included 32 patients with mCRPC who underwent both FDG and PSMA PET/CT imaging after two or four cycles of PSMA RLT. Patients with FDG+/PSMA- lesions prior to PSMA RLT were not considered. The presence of FDG+/PSMA- lesions was assessed with follow-up dual tracer imaging of patients after two or four cycles of PSMA RLT. Patients with at least one new FDG+/PSMA- lesion were compared to patients without any FDG+/PSMA- lesions at the respective time points. A log-rank analysis was used to assess the difference in OS between subgroups. Results: After two cycles of PSMA RLT, four of 32 patients (13\%) had FDG+/PSMA- metastases. No significant difference in OS was observed (p = 0.807), as compared to patients without FDG+/PSMA- lesions. Follow-up dual tracer imaging after the 4th cycle of PSMA RLT was available in 18 patients. Of these, four patients presented with FDG+/PSMA- findings (n = 2 already after two cycles). After the fourth cycle of PSMA RLT, no significant difference in OS was observed between patients with and without FDG+/PSMA- lesions (p = 0.442). Conclusion: This study shows that FDG+/PSMA- lesions develop in a limited number of patients undergoing PSMA RLT. Further studies are needed to establish the clinical relevance of such lesions.}, language = {en} } @article{DetomasAltieriSchloetelburgetal.2021, author = {Detomas, Mario and Altieri, Barbara and Schl{\"o}telburg, Wiebke and Appenzeller, Silke and Schlaffer, Sven and Coras, Roland and Schirbel, Andreas and Wild, Vanessa and Kroiss, Matthias and Sbiera, Silviu and Fassnacht, Martin and Deutschbein, Timo}, title = {Case Report: Consecutive Adrenal Cushing's Syndrome and Cushing's Disease in a Patient With Somatic CTNNB1, USP8, and NR3C1 Mutations}, series = {Frontiers in Endocrinology}, volume = {12}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2021.731579}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244596}, year = {2021}, abstract = {The occurrence of different subtypes of endogenous Cushing's syndrome (CS) in single individuals is extremely rare. We here present the case of a female patient who was successfully cured from adrenal CS 4 years before being diagnosed with Cushing's disease (CD). The patient was diagnosed at the age of 50 with ACTH-independent CS and a left-sided adrenal adenoma, in January 2015. After adrenalectomy and histopathological confirmation of a cortisol-producing adrenocortical adenoma, biochemical hypercortisolism and clinical symptoms significantly improved. However, starting from 2018, the patient again developed signs and symptoms of recurrent CS. Subsequent biochemical and radiological workup suggested the presence of ACTH-dependent CS along with a pituitary microadenoma. The patient underwent successful transsphenoidal adenomectomy, and both postoperative adrenal insufficiency and histopathological workup confirmed the diagnosis of CD. Exome sequencing excluded a causative germline mutation but showed somatic mutations of the β-catenin protein gene (CTNNB1) in the adrenal adenoma, and of both the ubiquitin specific peptidase 8 (USP8) and the glucocorticoid receptor (NR3C1) genes in the pituitary adenoma. In conclusion, our case illustrates that both ACTH-independent and ACTH-dependent CS may develop in a single individual even without evidence for a common genetic background.}, language = {en} } @article{GentzschHoffmannOhshimaetal.2021, author = {Gentzsch, Christian and Hoffmann, Matthias and Ohshima, Yasuhiro and Nose, Naoko and Chen, Xinyu and Higuchi, Takahiro and Decker, Michael}, title = {Synthesis and Initial Characterization of a Selective, Pseudo-irreversible Inhibitor of Human Butyrylcholinesterase as PET Tracer}, series = {ChemMedChem}, volume = {16}, journal = {ChemMedChem}, number = {9}, doi = {10.1002/cmdc.202000942}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239904}, pages = {1427 -- 1437}, year = {2021}, abstract = {The enzyme butyrylcholinesterase (BChE) represents a promising target for imaging probes to potentially enable early diagnosis of neurodegenerative diseases like Alzheimer's disease (AD) and to monitor disease progression in some forms of cancer. In this study, we present the design, facile synthesis, in vitro and preliminary ex vivo and in vivo evaluation of a morpholine-based, selective inhibitor of human BChE as a positron emission tomography (PET) tracer with a pseudo-irreversible binding mode. We demonstrate a novel protecting group strategy for 18F radiolabeling of carbamate precursors and show that the inhibitory potency as well as kinetic properties of our unlabeled reference compound were retained in comparison to the parent compound. In particular, the prolonged duration of enzyme inhibition of such a morpholinocarbamate motivated us to design a PET tracer, possibly enabling a precise mapping of BChE distribution.}, language = {en} } @article{WeichWernerBucketal.2021, author = {Weich, Alexander and Werner, Rudolf A. and Buck, Andreas K. and Hartrampf, Philipp E. and Serfling, Sebastian E. and Scheurlen, Michael and Wester, Hans-J{\"u}rgen and Meining, Alexander and Kircher, Stefan and Higuchi, Takahiro and Pomper, Martin G. and Rowe, Steven P. and Lapa, Constantin and Kircher, Malte}, title = {CXCR4-Directed PET/CT in Patients with Newly Diagnosed Neuroendocrine Carcinomas}, series = {Diagnostics}, volume = {11}, journal = {Diagnostics}, number = {4}, issn = {2075-4418}, doi = {10.3390/diagnostics11040605}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234231}, year = {2021}, abstract = {We aimed to elucidate the diagnostic potential of the C-X-C motif chemokine receptor 4 (CXCR4)-directed positron emission tomography (PET) tracer \(^{68}\)Ga-Pentixafor in patients with poorly differentiated neuroendocrine carcinomas (NEC), relative to the established reference standard \(^{18}\)F-FDG PET/computed tomography (CT). In our database, we retrospectively identified 11 treatment-na{\"i}ve patients with histologically proven NEC, who underwent \(^{18}\)F-FDG and CXCR4-directed PET/CT for staging and therapy planning. The images were analyzed on a per-patient and per-lesion basis and compared to immunohistochemical staining (IHC) of CXCR4 from PET-guided biopsies. \(^{68}\)Ga-Pentixafor visualized tumor lesions in 10/11 subjects, while \(^{18}\)F-FDG revealed sites of disease in all 11 patients. Although weak to moderate CXCR4 expression could be corroborated by IHC in 10/11 cases, \(^{18}\)F-FDG PET/CT detected significantly more tumor lesions (102 vs. 42; total lesions, n = 107; p < 0.001). Semi-quantitative analysis revealed markedly higher 18F-FDG uptake as compared to \(^{68}\)Ga-Pentixafor (maximum and mean standardized uptake values (SUV) and tumor-to-background ratios (TBR) of cancerous lesions, SUVmax: 12.8 ± 9.8 vs. 5.2 ± 3.7; SUVmean: 7.4 ± 5.4 vs. 3.1 ± 3.2, p < 0.001; and, TBR 7.2 ± 7.9 vs. 3.4 ± 3.0, p < 0.001). Non-invasive imaging of CXCR4 expression in NEC is inferior to the reference standard \(^{18}\)F-FDG PET/CT.}, language = {en} } @phdthesis{Kaiser2021, author = {Kaiser, Franz R.}, title = {Ein \(^{18}\)F markiertes PET-Radiopharmakon (LMI1195) zur Bildgebung des Norepinephrin-Stoffwechsels im Rattenherz}, doi = {10.25972/OPUS-24433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244335}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Der neuartige (18)F-markierte Tracer, LMI1195 (N-[3-bromo-4-(3-(18)F-fluoro-propoxy)-benzyl]-guanidine) wurde f{\"u}r die Bildgebung des sympathischen Nervensystems entwickelt; die hohe Spezifit{\"a}t dieses Tracers f{\"u}r den neuralen Uptake-1 Mechanismus wurde bereits gezeigt in Zell-Versuchen, sowie in Studien mit Kaninchen- und nicht menschlichen Primaten zur Bestimmung des kardialen Tracer-Uptakes. Das Ziel dieser Studie war es, die Mechanismen des kardialen (18)F-LMI1195-Uptakes in der Ratte zu untersuchen, von der bekannt ist, dass es neben dem Uptake-1 Mechanismus weitere Arten der Noradrenalin-Aufnahme im Herzen gibt.}, subject = {LMI1195}, language = {de} } @article{RichterWechWengetal.2020, author = {Richter, Julian A. J. and Wech, Tobias and Weng, Andreas M. and Stich, Manuel and Weick, Stefan and Breuer, Kathrin and Bley, Thorsten A. and K{\"o}stler, Herbert}, title = {Free-breathing self-gated 4D lung MRI using wave-CAIPI}, series = {Magnetic Resonance in Medicine}, volume = {84}, journal = {Magnetic Resonance in Medicine}, number = {6}, doi = {10.1002/mrm.28383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218075}, pages = {3223 -- 3233}, year = {2020}, abstract = {Purpose The aim of this study was to compare the wave-CAIPI (controlled aliasing in parallel imaging) trajectory to the Cartesian sampling for accelerated free-breathing 4D lung MRI. Methods The wave-CAIPI k-space trajectory was implemented in a respiratory self-gated 3D spoiled gradient echo pulse sequence. Trajectory correction applying the gradient system transfer function was used, and images were reconstructed using an iterative conjugate gradient SENSE (CG SENSE) algorithm. Five healthy volunteers and one patient with squamous cell carcinoma in the lung were examined on a clinical 3T scanner, using both sampling schemes. For quantitative comparison of wave-CAIPI and standard Cartesian imaging, the normalized mutual information and the RMS error between retrospectively accelerated acquisitions and their respective references were calculated. The SNR ratios were investigated in a phantom study. Results The obtained normalized mutual information values indicate a lower information loss due to acceleration for the wave-CAIPI approach. Average normalized mutual information values of the wave-CAIPI acquisitions were 10\% higher, compared with Cartesian sampling. Furthermore, the RMS error of the wave-CAIPI technique was lower by 19\% and the SNR was higher by 14\%. Especially for short acquisition times (down to 1 minute), the undersampled Cartesian images showed an increased artifact level, compared with wave-CAIPI. Conclusion The application of the wave-CAIPI technique to 4D lung MRI reduces undersampling artifacts, in comparison to a Cartesian acquisition of the same scan time. The benefit of wave-CAIPI sampling can therefore be traded for shorter examinations, or enhancing image quality of undersampled 4D lung acquisitions, keeping the scan time constant.}, language = {en} }