@article{BreunMonoranuKessleretal.2019, author = {Breun, Maria and Monoranu, Camelia M. and Kessler, Almuth F. and Matthies, Cordula and L{\"o}hr, Mario and Hagemann, Carsten and Schirbel, Andreas and Rowe, Steven P. and Pomper, Martin G. and Buck, Andreas K. and Wester, Hans-J{\"u}rgen and Ernestus, Ralf-Ingo and Lapa, Constantin}, title = {[\(^{68}\)Ga]-Pentixafor PET/CT for CXCR4-mediated imaging of vestibular schwannomas}, series = {Frontiers in Oncology}, volume = {9}, journal = {Frontiers in Oncology}, number = {503}, doi = {10.3389/fonc.2019.00503}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201863}, year = {2019}, abstract = {We have recently demonstrated CXCR4 overexpression in vestibular schwannomas (VS). This study investigated the feasibility of CXCR4-directed positron emission tomography/computed tomography (PET/CT) imaging of VS using the radiolabeled chemokine ligand [\(^{68}\)Ga]Pentixafor. Methods: 4 patients with 6 primarily diagnosed or pre-treated/observed VS were enrolled. All subjects underwent [\(^{68}\)Ga]Pentixafor PET/CT prior to surgical resection. Images were analyzed visually and semi-quantitatively for CXCR4 expression including calculation of tumor-to-background ratios (TBR). Immunohistochemistry served as standard of reference in three patients. Results: [\(^{68}\)Ga]Pentixafor PET/CT was visually positive in all cases. SUV\(_{mean}\) and SUV\(_{max}\) were 3.0 ± 0.3 and 3.8 ± 0.4 and TBR\(_{mean}\) and TBR\(_{max}\) were 4.0 ± 1.4 and 5.0 ± 1.7, respectively. Histological analysis confirmed CXCR4 expression in tumors. Conclusion: Non-invasive imaging of CXCR4 expression using [\(^{68}\)Ga]Pentixafor PET/CT of VS is feasible and could prove useful for in vivo assessment of CXCR4 expression.}, language = {en} } @article{LapaLueckerathKleinleinetal.2016, author = {Lapa, Constantin and L{\"u}ckerath, Katharina and Kleinlein, Irene and Monoranu, Camelia Maria and Linsenmann, Thomas and Kessler, Almuth F. and Rudelius, Martina and Kropf, Saskia and Buck, Andreas K. and Ernestus, Ralf-Ingo and Wester, Hans-J{\"u}rgen and L{\"o}hr, Mario and Herrmann, Ken}, title = {\(^{68}\)Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma}, series = {Theranostics}, volume = {6}, journal = {Theranostics}, number = {3}, doi = {10.7150/thno.13986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168174}, pages = {428-434}, year = {2016}, abstract = {Chemokine receptor-4 (CXCR4) has been reported to be overexpressed in glioblastoma (GBM) and to be associated with poor survival. This study investigated the feasibility of non-invasive CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine receptor ligand \(^{68}\)Ga-Pentixafor. 15 patients with clinical suspicion on primary or recurrent glioblastoma (13 primary, 2 recurrent tumors) underwent \(^{68}\)Ga-Pentixafor-PET/CT for assessment of CXCR4 expression prior to surgery. O-(2-\(^{18}\)F-fluoroethyl)-L-tyrosine (\(^{18}\)F-FET) PET/CT images were available in 11/15 cases and were compared visually and semi-quantitatively (SUV\(_{max}\), SUV\(_{mean}\)). Tumor-to-background ratios (TBR) were calculated for both PET probes. \(^{68}\)Ga-Pentixafor-PET/CT results were also compared to histological CXCR4 expression on neuronavigated surgical samples. \(^{68}\)Ga-Pentixafor-PET/CT was visually positive in 13/15 cases with SUV\(_{mean}\) and SUV\(_{max}\) of 3.0±1.5 and 3.9±2.0 respectively. Respective values for \(^{18}\)F-FET were 4.4±2.0 (SUV\(_{mean}\)) and 5.3±2.3 (SUV\(_{max}\)). TBR for SUV\(_{mean}\) and SUV\(_{max}\) were higher for \(^{68}\)Ga-Pentixafor than for \(^{18}\)F-FET (SUV\(_{mean}\) 154.0±90.7 vs. 4.1±1.3; SUV\(_{max}\) 70.3±44.0 and 3.8±1.2, p<0.01), respectively. Histological analysis confirmed CXCR4 expression in tumor areas with high \(^{68}\)Ga-Pentixafor uptake; regions of the same tumor without apparent \(^{68}\)Ga-Pentixafor uptake showed no or low receptor expression. In this pilot study, \(^{68}\)Ga-Pentixafor retention has been observed in the vast majority of glioblastoma lesions and served as readout for non-invasive determination of CXCR4 expression. Given the paramount importance of the CXCR4/SDF-1 axis in tumor biology, \(^{68}\)Ga-Pentixafor-PET/CT might prove a useful tool for sensitive, non-invasive in-vivo quantification of CXCR4 as well as selection of patients who might benefit from CXCR4-directed therapy.}, language = {en} } @article{HagemannAnackerErnestusetal.2012, author = {Hagemann, Carsten and Anacker, Jelena and Ernestus, Ralf-Ingo and Vince, Giles H.}, title = {A complete compilation of matrix metalloproteinase expression in human malignant gliomas}, series = {World Journal of Clinical Oncology}, volume = {3}, journal = {World Journal of Clinical Oncology}, number = {5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123982}, pages = {67-79}, year = {2012}, abstract = {Glioblastomas are characterized by an aggressive local growth pattern, a marked degree of invasiveness and poor prognosis. Tumor invasiveness is facilitated by the increased activity of proteolytic enzymes which are involved in destruction of the extracellular matrix of the surrounding healthy brain tissue. Elevated levels of matrix metalloproteinases (MMPs) were found in glioblastoma (GBM) cell-lines, as well as in GBM biopsies as compared with low-grade astrocytoma (LGA) and normal brain samples, indicating a role in malignant progression. A careful review of the available literature revealed that both the expression and role of several of the 23 human MMP proteins is controversely discussed and for some there are no data available at all. We therefore screened a panel of 15 LGA and 15 GBM biopsy samples for those MMPs for which there is either no, very limited or even contradictory data available. Hence, this is the first complete compilation of the expression pattern of all 23 human MMPs in astrocytic tumors. This study will support a better understanding of the specific expression patterns and interaction of proteolytic enzymes in malignant human glioma and may provide additional starting points for targeted patient therapy.}, language = {en} } @article{AdeyemoShapiraTombaccinietal.1991, author = {Adeyemo, O. M. and Shapira, S. and Tombaccini, D. and Pollard, H. and Feuerstein, G. and Sir{\´e}n, Anna-Leena}, title = {A goldfish model for evaluation of the neurotoxicit of \(\omega\)-conotoxin GVIA and screening of monoclonal antibodies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63087}, year = {1991}, abstract = {A Goldfish Model for Evaluation of the Neurotaxicity of \(\omega\)-Conotoxin GVI A and Screening of Monoclonal Antibodies. ADEYEMO, 0. M .. SHAPIRA, S., TOMBACCINI, D., POLLARD, H. 8 .• FEUERSTEIN, G .. AND SIREN, A-L. ( 1991 ). Toxicol. App/. Pharmaco/. 108, 489-496. The neurotoxicity of \(\omega\)-conotoxin (\(\omega\)-CgTx), a potent neuronal voltage-sensitive calcium channel blocker, was measured using a new bioassay. \(\omega\)-CgTx was administered intraperitoneally (ip) to goldfish weighing approximately 1.6 g, and dose-related changes were observed over a 2-hr period. \(\omega\)CgTx induced time- and dose-dependent abnormal swimming behavior (ASB) and mortality. The antitoxin activity of the antiborlies was investigated in vivo by either ( l) preincubation of the antibody with w-CgTx at 4°C overnight, or (2) pretreatment with antibody, 30 min before \(\omega\)CgTx injection in a 10:1 antibody/\(\omega\)-CgTx molar ratio. The LD50 dose of \(\omega\)-CgTx in goldfish was 5 nmol/kg ip, and preincubation of monoclonal antibody (50 nmol/kg ip) with \(\omega\)-CgTx (5 nmol/kg ip) significantly (p < 0.05) reduced mortality. ASB, and toxicity time. The antitoxin activity of the monoclonal antiborlies evidenced in the goldfish bioassay was further tested in the conscious rat. In the rat, the increases in mean arterial pressure and heart rate induced by \(\omega\)-CgTx (0.03 nmol/rat icv) were significantly (p < 0.02 and p < 0.0 l, respectively) attenuated by preincubation of the toxin with the antibody (0.3 nmol/rat). We conclude that the goldfish bioassay provides a simple. accurate, and inexpensive in vivo model for the study of the toxicity of \(\omega\)CgTx}, subject = {Neurobiologie}, language = {en} } @article{ConradsGrunzHuflageetal.2023, author = {Conrads, Nora and Grunz, Jan-Peter and Huflage, Henner and Luetkens, Karsten Sebastian and Feldle, Philipp and Grunz, Katharina and K{\"o}hler, Stefan and Westermaier, Thomas}, title = {Accuracy of pedicle screw placement using neuronavigation based on intraoperative 3D rotational fluoroscopy in the thoracic and lumbar spine}, series = {Archives of Orthopaedic and Trauma Surgery}, volume = {143}, journal = {Archives of Orthopaedic and Trauma Surgery}, number = {6}, doi = {10.1007/s00402-022-04514-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324966}, pages = {3007-3013}, year = {2023}, abstract = {Introduction In spinal surgery, precise instrumentation is essential. This study aims to evaluate the accuracy of navigated, O-arm-controlled screw positioning in thoracic and lumbar spine instabilities. Materials and methods Posterior instrumentation procedures between 2010 and 2015 were retrospectively analyzed. Pedicle screws were placed using 3D rotational fluoroscopy and neuronavigation. Accuracy of screw placement was assessed using a 6-grade scoring system. In addition, screw length was analyzed in relation to the vertebral body diameter. Intra- and postoperative revision rates were recorded. Results Thoracic and lumbar spine surgery was performed in 285 patients. Of 1704 pedicle screws, 1621 (95.1\%) showed excellent positioning in 3D rotational fluoroscopy imaging. The lateral rim of either pedicle or vertebral body was protruded in 25 (1.5\%) and 28 screws (1.6\%), while the midline of the vertebral body was crossed in 8 screws (0.5\%). Furthermore, 11 screws each (0.6\%) fulfilled the criteria of full lateral and medial displacement. The median relative screw length was 92.6\%. Intraoperative revision resulted in excellent positioning in 58 of 71 screws. Follow-up surgery due to missed primary malposition had to be performed for two screws in the same patient. Postsurgical symptom relief was reported in 82.1\% of patients, whereas neurological deterioration occurred in 8.9\% of cases with neurological follow-up. Conclusions Combination of neuronavigation and 3D rotational fluoroscopy control ensures excellent accuracy in pedicle screw positioning. As misplaced screws can be detected reliably and revised intraoperatively, repeated surgery for screw malposition is rarely required.}, language = {en} } @article{MrestaniPauliKollmannsbergeretal.2021, author = {Mrestani, Achmed and Pauli, Martin and Kollmannsberger, Philip and Repp, Felix and Kittel, Robert J. and Eilers, Jens and Doose, S{\"o}ren and Sauer, Markus and Sir{\´e}n, Anna-Leena and Heckmann, Manfred and Paul, Mila M.}, title = {Active zone compaction correlates with presynaptic homeostatic potentiation}, series = {Cell Reports}, volume = {37}, journal = {Cell Reports}, number = {1}, doi = {10.1016/j.celrep.2021.109770}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265497}, pages = {109770}, year = {2021}, abstract = {Neurotransmitter release is stabilized by homeostatic plasticity. Presynaptic homeostatic potentiation (PHP) operates on timescales ranging from minute- to life-long adaptations and likely involves reorganization of presynaptic active zones (AZs). At Drosophila melanogaster neuromuscular junctions, earlier work ascribed AZ enlargement by incorporating more Bruchpilot (Brp) scaffold protein a role in PHP. We use localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM]) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) to study AZ plasticity during PHP at the synaptic mesoscale. We find compaction of individual AZs in acute philanthotoxin-induced and chronic genetically induced PHP but unchanged copy numbers of AZ proteins. Compaction even occurs at the level of Brp subclusters, which move toward AZ centers, and in Rab3 interacting molecule (RIM)-binding protein (RBP) subclusters. Furthermore, correlative confocal and dSTORM imaging reveals how AZ compaction in PHP translates into apparent increases in AZ area and Brp protein content, as implied earlier.}, language = {en} } @article{LugerHohmannNiemannetal.2015, author = {Luger, Sebastian and Hohmann, Carina and Niemann, Daniela and Kraft, Peter and Gunreben, Ignaz and Neumann-Haefelin, Tobias and Kleinschnitz, Christoph and Steinmetz, Helmuth and Foerch, Christian and Pfeilschifter, Waltraud}, title = {Adherence to oral anticoagulant therapy in secondary stroke prevention - impact of the novel oral anticoagulants}, series = {Patient Preference and Adherence}, volume = {9}, journal = {Patient Preference and Adherence}, doi = {10.2147/PPA.S88994}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144477}, pages = {1695-1705}, year = {2015}, abstract = {Background: Oral anticoagulant therapy (OAT) potently prevents strokes in patients with atrial fibrillation. Vitamin K antagonists (VKA) have been the standard of care for long-term OAT for decades, but non-VKA oral anticoagulants (NOAC) have recently been approved for this indication, and raised many questions, among them their influence on medication adherence. We assessed adherence to VKA and NOAC in secondary stroke prevention. Methods: All patients treated from October 2011 to September 2012 for ischemic stroke or transient ischemic attack with a subsequent indication for OAT, at three academic hospitals were entered into a prospective registry, and baseline data and antithrombotic treatment at discharge were recorded. At the 1-year follow-up, we assessed the adherence to different OAT strategies and patients' adherence to their respective OAT. We noted OAT changes, reasons to change treatment, and factors that influence persistence to the prescribed OAT. Results: In patients discharged on OAT, we achieved a fatality corrected response rate of 73.3\% (n=209). A total of 92\% of these patients received OAT at the 1-year follow-up. We observed good adherence to both VKA and NOAC (VKA, 80.9\%; NOAC, 74.8\%; P=0.243) with a statistically nonsignificant tendency toward a weaker adherence to dabigatran. Disability at 1-year follow-up was an independent predictor of lower adherence to any OAT after multivariate analysis, whereas the choice of OAT did not have a relevant influence. Conclusion: One-year adherence to OAT after stroke is strong (>90\%) and patients who switch therapy most commonly switch toward another OAT. The 1-year adherence rates to VKA and NOAC in secondary stroke prevention do not differ significantly between both therapeutic strategies.}, language = {en} } @article{McCarronWangSirenetal.1994, author = {McCarron, R. M. and Wang, L. and Sir{\´e}n, Anna-Leena and Spatz, M. and Hallenbeck, J. M.}, title = {Adhesion molecules on normotensive and hypertensive rat brain endothelial cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86819}, year = {1994}, abstract = {The intercellular adhesion of circulating leukocytes to vascular endothellum ls a prerequisite for leukocyte emigration from the blood to extravascular tlssues. This process is facllltated by adhesion molecules on the surfaces of both the vascular endothelial cells and the leukocytes. The experiments presented here demonstrate for the first time that the leukocyte adhesion receptor, intercellular adhesion molecule-1, is constitutively expressed on cultured cerebromicrovascular endothelial cell lines derived from both spontaneously hypertensive (SHR) rats and normotensive WistarKyoto (WKY) rats. Both cultures contained simliar numbers of cells constitutively expressing this adhesion molecule (31.4\% and 29.6\%, respectlvely). Adhesion molecule expression was up-regulated by interleukin-1 ß, tumor necrosis factor-a, interferon-y and lipopolysaccharide in a dose- and time-dependent manner. Both cultures exhibited similar maximum levels of adhesion molecule up-regulation to optimal concentrations of all three cytokines. However, SHR endothelial cells were moresensitive to all three cytokines; significantly higher levels of intercellular adhesion molecule-1 expresslon were seen on SHR as opposed to WKY endothelial cells cultured with sub-optimal cytokine concentrations. It was also observed that lipopolysaccharide up-regulated intercellular adhesion molecule-1 expression on SHR endothelial cells to a greater extent than on WKY endothelial cells. The findings that intercellular adhesion molecule-1 can be up-regulated to a greater degree on SHR endothelial cells may have important implications for in vivo perivascular leukocyte accumulation under hypertensive conditions. These observations indicate a possible mechanism by which hypertension may predispose to the development of disorders such as atherosclerosis and stroke.}, subject = {Endothelzelle}, language = {en} } @techreport{McCarronDoronSirenetal.1994, author = {McCarron, R. M. and Doron, D. A. and Sir{\´e}n, Anna-Leena and Feuerstein, G. Z. and Heldman, E. and Pollard, H. B. and Spatz, M. and Hallenbeck, J. M.}, title = {Agonist-stimulated release of von Willebrand factor and procoagulant factor VIII in rats with and without risk factors for stroke [Research Report]}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62945}, year = {1994}, abstract = {Lipopolysaccharidc (LPS)-induced (i.v. or i.c.v., 1.8 mg/kg) release of von Willebrand factor (vWF) ·was examined in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. SHR rats releascd significantly (P < 0.05) more vWF than WKY rats in response to LPS. LPS also inhibited factor VIII procoagulant activity (FVIII: c) which may indicate an increase in thrombin activity. Cultured cerebrovascular endothelial cells (EC) derived from both SHR and WKY rats, as weil as human umbilical vein EC (HUVEC) cultures constitutively released vWF. Treatment with agonists including LPS, thrombin and tumor necrosis factor-a (TNFa) did not affect the in vitro secretion of vWF by cerebrovascular EC cultures but significantly upregulated vWF release by HUVEC cultur~s. Preincubation of cerebrovascular EC cultures with interleukin-1 OL-l) ± TNFa or co-culturing in the presence of LPS-activated syngeneic monocytes had no effect on vWF secretion. The findings demoostrate that conditions of hypertension may affect endothelial cells and make them more responsive to agonist Stimulation and thereby increase secretion of vWF, an important factqr in hemostasis as weil as thrombosis. The capacity of LPS to significantly affect the in vivo secretion of vWF in SHR and WKY rats but not cultured cerebrovascular EC indicates that observed elevations in plasma vWF were not derived from cerebrovascular EC. lt is suggested that hypertension may function as a risk factor for thrombotic stroke by influencing factors involved in coagulation processes, such as vWF and factor VIII : c.}, subject = {Neurobiologie}, language = {en} } @article{HoppNolteStetteretal.2017, author = {Hopp, Sarah and Nolte, Marc W. and Stetter, Christian and Kleinschnitz, Christoph and Sir{\´e}n, Anna-Leena and Albert-Weissenberger, Christiane}, title = {Alleviation of secondary brain injury, posttraumatic inflammation, and brain edema formation by inhibition of factor XIIa}, series = {Journal of Neuroinflammation}, volume = {14}, journal = {Journal of Neuroinflammation}, number = {39}, doi = {10.1186/s12974-017-0815-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157490}, year = {2017}, abstract = {Background: Traumatic brain injury (TBI) is a devastating neurological condition and a frequent cause of permanent disability. Posttraumatic inflammation and brain edema formation, two pathological key events contributing to secondary brain injury, are mediated by the contact-kinin system. Activation of this pathway in the plasma is triggered by activated factor XII. Hence, we set out to study in detail the influence of activated factor XII on the abovementioned pathophysiological features of TBI. Methods: Using a cortical cryogenic lesion model in mice, we investigated the impact of genetic deficiency of factor XII and inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused Infestin-4 on the release of bradykinin, the brain lesion size, and contact-kinin system-dependent pathological events. We determined protein levels of bradykinin, intracellular adhesion molecule-1, CC-chemokine ligand 2, and interleukin-1β by enzyme-linked immunosorbent assays and mRNA levels of genes related to inflammation by quantitative real-time PCR. Brain lesion size was determined by tetrazolium chloride staining. Furthermore, protein levels of the tight junction protein occludin, integrity of the blood-brain barrier, and brain water content were assessed by Western blot analysis, extravasated Evans Blue dye, and the wet weight-dry weight method, respectively. Infiltration of neutrophils and microglia/activated macrophages into the injured brain lesions was quantified by immunohistological stainings. Results: We show that both genetic deficiency of factor XII and inhibition of activated factor XII in mice diminish brain injury-induced bradykinin release by the contact-kinin system and minimize brain lesion size, blood-brain barrier leakage, brain edema formation, and inflammation in our brain injury model. Conclusions: Stimulation of bradykinin release by activated factor XII probably plays a prominent role in expanding secondary brain damage by promoting brain edema formation and inflammation. Pharmacological blocking of activated factor XII could be a useful therapeutic principle in the treatment of TBI-associated pathologic processes by alleviating posttraumatic inflammation and brain edema formation.}, language = {en} } @article{StetterLopezCaperuchipiHoppKraemeretal.2021, author = {Stetter, Christian and Lopez-Caperuchipi, Simon and Hopp-Kr{\"a}mer, Sarah and Bieber, Michael and Kleinschnitz, Christoph and Sir{\´e}n, Anna-Leena and Albert-Weißenberger, Christiane}, title = {Amelioration of cognitive and behavioral deficits after traumatic brain injury in coagulation factor XII deficient mice}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms22094855}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284959}, year = {2021}, abstract = {Based on recent findings that show that depletion of factor XII (FXII) leads to better posttraumatic neurological recovery, we studied the effect of FXII-deficiency on post-traumatic cognitive and behavioral outcomes in female and male mice. In agreement with our previous findings, neurological deficits on day 7 after weight-drop traumatic brain injury (TBI) were significantly reduced in FXII\(^{-/-}\) mice compared to wild type (WT) mice. Also, glycoprotein Ib (GPIb)-positive platelet aggregates were more frequent in brain microvasculature of WT than FXII\(^{-/-}\) mice 3 months after TBI. Six weeks after TBI, memory for novel object was significantly reduced in both female and male WT but not in FXII\(^{-/-}\) mice compared to sham-operated mice. In the setting of automated home-cage monitoring of socially housed mice in IntelliCages, female WT mice but not FXII\(^{-/-}\) mice showed decreased exploration and reacted negatively to reward extinction one month after TBI. Since neuroendocrine stress after TBI might contribute to trauma-induced cognitive dysfunction and negative emotional contrast reactions, we measured peripheral corticosterone levels and the ration of heart, lung, and spleen weight to bodyweight. Three months after TBI, plasma corticosterone levels were significantly suppressed in both female and male WT but not in FXII\(^{-/-}\) mice, while the relative heart weight increased in males but not in females of both phenotypes when compared to sham-operated mice. Our results indicate that FXII deficiency is associated with efficient post-traumatic behavioral and neuroendocrine recovery.}, language = {en} } @article{SirenStetterHirschbergetal.2013, author = {Sir{\´e}n, Anna-Leena and Stetter, Christian and Hirschberg, Markus and Nieswandt, Bernhard and Ernestus, Ralf-Ingo and Heckmann, Manfred}, title = {An experimental protocol for in vivo imaging of neuronal structural plasticity with 2-photon microscopy in mice}, series = {Experimental \& Translational Stroke Medicine}, journal = {Experimental \& Translational Stroke Medicine}, doi = {10.1186/2040-7378-5-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96908}, year = {2013}, abstract = {Introduction Structural plasticity with synapse formation and elimination is a key component of memory capacity and may be critical for functional recovery after brain injury. Here we describe in detail two surgical techniques to create a cranial window in mice and show crucial points in the procedure for long-term repeated in vivo imaging of synaptic structural plasticity in the mouse neocortex. Methods Transgenic Thy1-YFP(H) mice expressing yellow-fluorescent protein (YFP) in layer-5 pyramidal neurons were prepared under anesthesia for in vivo imaging of dendritic spines in the parietal cortex either with an open-skull glass or thinned skull window. After a recovery period of 14 days, imaging sessions of 45-60 min in duration were started under fluothane anesthesia. To reduce respiration-induced movement artifacts, the skull was glued to a stainless steel plate fixed to metal base. The animals were set under a two-photon microscope with multifocal scanhead splitter (TriMScope, LaVision BioTec) and the Ti-sapphire laser was tuned to the optimal excitation wavelength for YFP (890 nm). Images were acquired by using a 20×, 0.95 NA, water-immersion objective (Olympus) in imaging depth of 100-200 μm from the pial surface. Two-dimensional projections of three-dimensional image stacks containing dendritic segments of interest were saved for further analysis. At the end of the last imaging session, the mice were decapitated and the brains removed for histological analysis. Results Repeated in vivo imaging of dendritic spines of the layer-5 pyramidal neurons was successful using both open-skull glass and thinned skull windows. Both window techniques were associated with low phototoxicity after repeated sessions of imaging. Conclusions Repeated imaging of dendritic spines in vivo allows monitoring of long-term structural dynamics of synapses. When carefully controlled for influence of repeated anesthesia and phototoxicity, the method will be suitable to study changes in synaptic structural plasticity after brain injury.}, language = {en} } @article{NattmannBreunMonoranuetal.2020, author = {Nattmann, Anja and Breun, Maria and Monoranu, Camelia M. and Matthies, Cordula and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Analysis of ADAM9 regulation and function in vestibular schwannoma primary cells}, series = {BMC Research Notes}, volume = {13}, journal = {BMC Research Notes}, doi = {10.1186/s13104-020-05378-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231213}, year = {2020}, abstract = {Objective Recently, we described a disintegrin and metalloproteinase 9 (ADAM9) overexpression by Schwann cells of vestibular schwannoma (VS) and suggested that it might be a marker for VS tumor growth and invasiveness. This research note provides additional data utilizing a small cohort of VS primary cultures and tissue samples. We examined whether reconstitution of Merlin expression in VS cells regulates ADAM9 protein expression and performed lentiviral ADAM9 knock down to investigate possible effects on VS cells numbers. Moreover, the co-localization of ADAM9 and Integrins α6 and α2β1, respectively, was examined by immunofluorescence double staining. Results ADAM9 expression was not regulated by Merlin in VS. However, ADAM9 knock down led to 58\% reduction in cell numbers in VS primary cell cultures (p < 0.0001). While ADAM9 and Integrin α2β1 were co-localized in only 22\% (2 of 9) of VS, ADAM9 and Integrin α6 were co-localized in 91\% (10 of 11) of VS. Therefore, we provide first observations on possible regulatory functions of ADAM9 expression in VS.}, language = {en} } @article{SchadtIsraelBeezetal.2023, author = {Schadt, Fabian and Israel, Ina and Beez, Alexandra and Alushi, Kastriot and Weiland, Judith and Ernestus, Ralf-Ingo and Westermaier, Thomas and Samnick, Samuel and Lilla, Nadine}, title = {Analysis of cerebral glucose metabolism following experimental subarachnoid hemorrhage over 7 days}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-022-26183-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300725}, year = {2023}, abstract = {Little is known about changes in brain metabolism following SAH, possibly leading towards secondary brain damage. Despite sustained progress in the last decade, analysis of in vivo acquired data still remains challenging. The present interdisciplinary study uses a semi-automated data analysis tool analyzing imaging data independently from the administrated radiotracer. The uptake of 2-[18F]Fluoro-2-deoxy-glucose ([\(^{18}\)F]FDG) was evaluated in different brain regions in 14 male Sprague-Dawley rats, randomized into two groups: (1) SAH induced by the endovascular filament model and (2) sham operated controls. Serial [\(^{18}\)F]FDG-PET measurements were carried out. Quantitative image analysis was performed by uptake ratio using a self-developed MRI-template based data analysis tool. SAH animals showed significantly higher [\(^{18}\)F]FDG accumulation in gray matter, neocortex and olfactory system as compared to animals of the sham group, while white matter and basal forebrain region showed significant reduced tracer accumulation in SAH animals. All significant metabolic changes were visualized from 3 h, over 24 h (day 1), day 4 and day 7 following SAH/sham operation. This [\(^{18}\)F]FDG-PET study provides important insights into glucose metabolism alterations following SAH—for the first time in different brain regions and up to day 7 during course of disease.}, language = {en} } @article{ShuaibXuCrainetal.1990, author = {Shuaib, A. and Xu, K. and Crain, B. and Sir{\´e}n, Anna-Leena and Feuerstein, Giora and Hallenbeck, J. and Davis, JN}, title = {Assessment of damage from implantation of microdialysis probes in the rat hippocampus with silver degeneration staining}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47433}, year = {1990}, abstract = {We used a sensitive silver degeneration staining method to study the effects of insertion of microdialysis probes in rat dorsal hippocampus and neocortex. Nine animals were sacrificed 24 h, 3 days or 7 days after implantation of dialysis tubing. Although mild neuronal cell death and small petechial hemorrhages were seen in elose proximity to the implantation site, the striking finding was the presence of degenerating axons both adjacent to the implantation site and in remote sites such as the corpus callosum and contralateral hippocampus. The observed changes could alter brain function near or remote from the implantation site and should be considered in analysis of dialysis experiments.}, subject = {Neurophysiologie}, language = {en} } @article{LankiewiczBowersReynoldsetal.1992, author = {Lankiewicz, Leszek and Bowers, Cyril Y. and Reynolds, G. A. and Labroo, Virender and Cohen, Louis A. and Vonhof, Stefan and Sir{\´e}n, Anna-Leena and Spatola, Arno F.}, title = {Biological Activities of Thionated Thyrotropin-Releasing Hormone Analogs}, series = {Biochemical and Biophysical Research Communications}, volume = {184}, journal = {Biochemical and Biophysical Research Communications}, number = {1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128152}, pages = {359-366}, year = {1992}, abstract = {No abstract available.}, language = {en} } @article{AlbertWeissenbergerStetterMeuthetal.2012, author = {Albert-Weissenberger, Christiane and Stetter, Christian and Meuth, Sven G. and G{\"o}bel, Kerstin and Bader, Michael and Sir{\´e}n, Anna-Leena and Kleinschnitz, Christoph}, title = {Blocking of Bradykinin Receptor B1 Protects from Focal Closed Head Injury in Mice by Reducing Axonal Damage and Astroglia Activation}, series = {Journal of Cerebral Blood Flow and Metabolism}, volume = {32}, journal = {Journal of Cerebral Blood Flow and Metabolism}, number = {9}, doi = {10.1038/jcbfm.2012.62}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125903}, pages = {1747-1756}, year = {2012}, abstract = {The two bradykinin receptors B1R and B2R are central components of the kallikrein-kinin system with different expression kinetics and binding characteristics. Activation of these receptors by kinins triggers inflammatory responses in the target organ and in most situations enhances tissue damage. We could recently show that blocking of B1R, but not B2R, protects from cortical cryolesion by reducing inflammation and edema formation. In the present study, we investigated the role of B1R and B2R in a closed head model of focal traumatic brain injury (TBI; weight drop). Increased expression of B1R in the injured hemispheres of wild-type mice was restricted to the later stages after brain trauma, i.e. day 7 (P<0.05), whereas no significant induction could be observed for the B2R (P>0.05). Mice lacking the B1R, but not the B2R, showed less functional deficits on day 3 (P<0.001) and day 7 (P<0.001) compared with controls. Pharmacological blocking of B1R in wild-type mice had similar effects. Reduced axonal injury and astroglia activation could be identified as underlying mechanisms, while inhibition of B1R had only little influence on the local inflammatory response in this model. Inhibition of B1R may become a novel strategy to counteract trauma-induced neurodegeneration.}, language = {en} } @article{LinsenmannMonoranuKessleretal.2013, author = {Linsenmann, Thomas and Monoranu, Camelia M. and Kessler, Almuth F. and Ernestus, Ralf I. and Westermaier, Thomas}, title = {Bone chips, fibrin glue, and osteogeneration following lateral suboccipital craniectomy: a case report}, series = {BMC Research Notes}, journal = {BMC Research Notes}, doi = {10.1186/1756-0500-6-523}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97346}, year = {2013}, abstract = {Background Suboccipital craniectomy is a conventional approach for exploring cerebellopontine angle lesions. A variety of techniques have been successfully employed to reconstruct a craniectomy. This is the first report about the histological findings after performing a cranioplasty by using a mixture of autologous bone chips and human allogenic fibrin glue. Case presentation A 53-year-old German woman underwent left lateral suboccipital retrosigmoidal craniectomy for treatment of trigeminal neuralgia in 2008. Cranioplasty was perfomed by using a mixture of autologous bone chips and human allogenic fibrin glue. Due to recurrent neuralgia, a second left lateral suboccipital craniectomy was performed in 2012. The intraoperative findings revealed a complete ossification of the former craniotomy including widely mature trabecular bone tissue in the histological examination. Conclusion A mixture of autologous bone chips and human allogenic fibrin glue seems to provide sufficient bone-regeneration revealed by histological and neuroradiological examinations.}, language = {en} } @article{FeldheimKesslerFeldheimetal.2023, author = {Feldheim, Jonas and Kessler, Almuth F. and Feldheim, Julia J. and Schmitt, Dominik and Oster, Christoph and Lazaridis, Lazaros and Glas, Martin and Ernestus, Ralf-Ingo and Monoranu, Camelia M. and L{\"o}hr, Mario and Hagemann, Carsten}, title = {BRMS1 in gliomas — an expression analysis}, series = {Cancers}, volume = {15}, journal = {Cancers}, number = {11}, issn = {2072-6694}, doi = {10.3390/cancers15112907}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319225}, year = {2023}, abstract = {The metastatic suppressor BRMS1 interacts with critical steps of the metastatic cascade in many cancer entities. As gliomas rarely metastasize, BRMS1 has mainly been neglected in glioma research. However, its interaction partners, such as NFκB, VEGF, or MMPs, are old acquaintances in neurooncology. The steps regulated by BRMS1, such as invasion, migration, and apoptosis, are commonly dysregulated in gliomas. Therefore, BRMS1 shows potential as a regulator of glioma behavior. By bioinformatic analysis, in addition to our cohort of 118 specimens, we determined BRMS1 mRNA and protein expression as well as its correlation with the clinical course in astrocytomas IDH mutant, CNS WHO grade 2/3, and glioblastoma IDH wild-type, CNS WHO grade 4. Interestingly, we found BRMS1 protein expression to be significantly decreased in the aforementioned gliomas, while BRMS1 mRNA appeared to be overexpressed throughout. This dysregulation was independent of patients' characteristics or survival. The protein and mRNA expression differences cannot be finally explained at this stage. However, they suggest a post-transcriptional dysregulation that has been previously described in other cancer entities. Our analyses present the first data on BRMS1 expression in gliomas that can provide a starting point for further investigations.}, language = {en} } @article{AlbertWeissenbergerMenclSchuhmannetal.2014, author = {Albert-Weissenberger, Christiane and Mencl, Stine and Schuhmann, Michael K. and Salur, Irmak and G{\"o}b, Eva and Langhauser, Friederike and Hopp, Sarah and Hennig, Nelli and Meuth, Sven G. and Nolte, Marc W. and Sir{\´e}n, Anna-Leena and Kleinschnitz, Christoph}, title = {C1-Inhibitor protects from focal brain trauma in a cortical cryolesion mice model by reducing thrombo-inflammation}, series = {Frontiers in Cellular Neuroscience}, volume = {8}, journal = {Frontiers in Cellular Neuroscience}, issn = {1662-5102}, doi = {10.3389/fncel.2014.00269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119263}, pages = {269}, year = {2014}, abstract = {Traumatic brain injury (TBI) induces a strong inflammatory response which includes blood-brain barrier damage, edema formation and infiltration of different immune cell subsets. More recently, microvascular thrombosis has been identified as another pathophysiological feature of TBI. The contact-kinin system represents an interface between inflammatory and thrombotic circuits and is activated in different neurological diseases. C1-Inhibitor counteracts activation of the contact-kinin system at multiple levels. We investigated the therapeutic potential of C1-Inhibitor in a model of TBI. Male and female C57BL/6 mice were subjected to cortical cryolesion and treated with C1-Inhibitor after 1 h. Lesion volumes were assessed between day 1 and day 5 and blood-brain barrier damage, thrombus formation as well as the local inflammatory response were determined post TBI. Treatment of male mice with 15.0 IU C1-Inhibitor, but not 7.5 IU, 1 h after cryolesion reduced lesion volumes by ~75\% on day 1. This protective effect was preserved in female mice and at later stages of trauma. Mechanistically, C1-Inhibitor stabilized the blood-brain barrier and decreased the invasion of immune cells into the brain parenchyma. Moreover, C1-Inhibitor had strong antithrombotic effects. C1-Inhibitor represents a multifaceted anti-inflammatory and antithrombotic compound that prevents traumatic neurodegeneration in clinically meaningful settings.}, language = {en} }