@article{GrotemeyerFischerKoprichetal.2023, author = {Grotemeyer, Alexander and Fischer, Judith F. and Koprich, James B. and Brotchie, Jonathan M. and Blum, Robert and Volkmann, Jens and Ip, Chi Wang}, title = {Inflammasome inhibition protects dopaminergic neurons from α-synuclein pathology in a model of progressive Parkinson's disease}, series = {Journal of Neuroinflammation}, volume = {20}, journal = {Journal of Neuroinflammation}, doi = {10.1186/s12974-023-02759-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357652}, year = {2023}, abstract = {Neuroinflammation has been suggested as a pathogenetic mechanism contributing to Parkinson's disease (PD). However, anti-inflammatory treatment strategies have not yet been established as a therapeutic option for PD patients. We have used a human α-synuclein mouse model of progressive PD to examine the anti-inflammatory and neuroprotective effects of inflammasome inhibition on dopaminergic (DA) neurons in the substantia nigra (SN). As the NLRP3 (NOD-, LRR- and pyrin domain-containing 3)-inflammasome is a core interface for both adaptive and innate inflammation and is also highly druggable, we investigated the implications of its inhibition. Repeat administration of MCC950, an inhibitor of NLRP3, in a PD model with ongoing pathology reduced CD4\(^+\) and CD8\(^+\) T cell infiltration into the SN. Furthermore, the anti-inflammasome treatment mitigated microglial activation and modified the aggregation of α-synuclein protein in DA neurons. MCC950-treated mice showed significantly less neurodegeneration of DA neurons and a reduction in PD-related motor behavior. In summary, early inflammasome inhibition can reduce neuroinflammation and prevent DA cell death in an α-synuclein mouse model for progressive PD.}, language = {en} } @article{HartmannsbergerScribaGuidolinetal.2024, author = {Hartmannsberger, Beate and Scriba, Sabrina and Guidolin, Carolina and Becker, Juliane and Mehling, Katharina and Doppler, Kathrin and Sommer, Claudia and Rittner, Heike L.}, title = {Transient immune activation without loss of intraepidermal innervation and associated Schwann cells in patients with complex regional pain syndrome}, series = {Journal of Neuroinflammation}, volume = {21}, journal = {Journal of Neuroinflammation}, doi = {10.1186/s12974-023-02969-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357164}, year = {2024}, abstract = {Background Complex regional pain syndrome (CRPS) develops after injury and is characterized by disproportionate pain, oedema, and functional loss. CRPS has clinical signs of neuropathy as well as neurogenic inflammation. Here, we asked whether skin biopsies could be used to differentiate the contribution of these two systems to ultimately guide therapy. To this end, the cutaneous sensory system including nerve fibres and the recently described nociceptive Schwann cells as well as the cutaneous immune system were analysed. Methods We systematically deep-phenotyped CRPS patients and immunolabelled glabrous skin biopsies from the affected ipsilateral and non-affected contralateral finger of 19 acute (< 12 months) and 6 chronic (> 12 months after trauma) CRPS patients as well as 25 sex- and age-matched healthy controls (HC). Murine foot pads harvested one week after sham or chronic constriction injury were immunolabelled to assess intraepidermal Schwann cells. Results Intraepidermal Schwann cells were detected in human skin of the finger—but their density was much lower compared to mice. Acute and chronic CRPS patients suffered from moderate to severe CRPS symptoms and corresponding pain. Most patients had CRPS type I in the warm category. Their cutaneous neuroglial complex was completely unaffected despite sensory plus signs, e.g. allodynia and hyperalgesia. Cutaneous innate sentinel immune cells, e.g. mast cells and Langerhans cells, infiltrated or proliferated ipsilaterally independently of each other—but only in acute CRPS. No additional adaptive immune cells, e.g. T cells and plasma cells, infiltrated the skin. Conclusions Diagnostic skin punch biopsies could be used to diagnose individual pathophysiology in a very heterogenous disease like acute CRPS to guide tailored treatment in the future. Since numbers of inflammatory cells and pain did not necessarily correlate, more in-depth analysis of individual patients is necessary.}, language = {en} } @article{SchuhmannLanghauserZimmermannetal.2023, author = {Schuhmann, Michael K. and Langhauser, Friederike and Zimmermann, Lena and Bellut, Maximilian and Kleinschnitz, Christoph and Fluri, Felix}, title = {Dimethyl fumarate attenuates lymphocyte infiltration and reduces infarct size in experimental stroke}, series = {International journal of molecular sciences}, volume = {24}, journal = {International journal of molecular sciences}, number = {21}, doi = {10.3390/ijms242115540}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357731}, year = {2023}, abstract = {Ischemic stroke is associated with exacerbated tissue damage caused by the activation of immune cells and the initiation of other inflammatory processes. Dimethyl fumarate (DMF) is known to modulate the immune response, activate antioxidative pathways, and improve the blood-brain barrier (BBB) after stroke. However, the specific impact of DMF on immune cells after cerebral ischemia remains unclear. In our study, male mice underwent transient middle cerebral artery occlusion (tMCAO) for 30 min and received oral DMF (15 mg/kg) or a vehicle immediately after tMCAO, followed by twice-daily administrations for 7 days. Infarct volume was assessed on T2-weighted magnetic resonance images on days 1 and 7 after tMCAO. Brain-infiltrating immune cells (lymphocytes, monocytes) and microglia were quantified using fluorescence-activated cell sorting. DMF treatment significantly reduced infarct volumes and brain edema. On day 1 after tMCAO, DMF-treated mice showed reduced lymphocyte infiltration compared to controls, which was not observed on day 7. Monocyte and microglial cell counts did not differ between groups on either day. In the acute phase of stroke, DMF administration attenuated lymphocyte infiltration, probably due to its stabilizing effect on the BBB. This highlights the potential of DMF as a therapeutic candidate for mitigating immune cell-driven damage in stroke.}, language = {en} } @article{PozziBolzoniBiellaetal.2023, author = {Pozzi, Nicol{\´o} Gabriele and Bolzoni, Francesco and Biella, Gabriele Eliseo Mario and Pezzoli, Gianni and Ip, Chi Wang and Volkmann, Jens and Cavallari, Paolo and Asan, Esther and Isaias, Ioannis Ugo}, title = {Brain noradrenergic innervation supports the development of Parkinson's tremor: a study in a reserpinized rat model}, series = {Cells}, volume = {12}, journal = {Cells}, number = {21}, issn = {2073-4409}, doi = {10.3390/cells12212529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357721}, year = {2023}, abstract = {The pathophysiology of tremor in Parkinson's disease (PD) is evolving towards a complex alteration to monoaminergic innervation, and increasing evidence suggests a key role of the locus coeruleus noradrenergic system (LC-NA). However, the difficulties in imaging LC-NA in patients challenge its direct investigation. To this end, we studied the development of tremor in a reserpinized rat model of PD, with or without a selective lesioning of LC-NA innervation with the neurotoxin DSP-4. Eight male rats (Sprague Dawley) received DSP-4 (50 mg/kg) two weeks prior to reserpine injection (10 mg/kg) (DR-group), while seven male animals received only reserpine treatment (R-group). Tremor, rigidity, hypokinesia, postural flexion and postural immobility were scored before and after 20, 40, 60, 80, 120 and 180 min of reserpine injection. Tremor was assessed visually and with accelerometers. The injection of DSP-4 induced a severe reduction in LC-NA terminal axons (DR-group: 0.024 ± 0.01 vs. R-group: 0.27 ± 0.04 axons/um\(^2\), p < 0.001) and was associated with significantly less tremor, as compared to the R-group (peak tremor score, DR-group: 0.5 ± 0.8 vs. R-group: 1.6 ± 0.5; p < 0.01). Kinematic measurement confirmed the clinical data (tremor consistency (\% of tremor during 180 s recording), DR-group: 37.9 ± 35.8 vs. R-group: 69.3 ± 29.6; p < 0.05). Akinetic-rigid symptoms did not differ between the DR- and R-groups. Our results provide preliminary causal evidence for a critical role of LC-NA innervation in the development of PD tremor and foster the development of targeted therapies for PD patients.}, language = {en} } @phdthesis{Wilhelmi2024, author = {Wilhelmi, Kai Alexander}, title = {Untersuchung von Ver{\"a}nderungen der myelinisierten Nervenfasern durch Entmarkung in Haut- und Nervenbiopsien von Patienten mit Polyneuropathie}, doi = {10.25972/OPUS-36004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360046}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In dieser Arbeit wurde durch das immunhistochemische Anf{\"a}rben von nodalen (Natriumkan{\"a}le, NF), paranodalen (Caspr, NF) und internodalen (MBP) Proteinen der in Fingerhautbiopsien vorhanden Nervenfasern untersucht, ob eine Ver{\"a}nderung der typischen Verteilungsmuster dieser Proteine, eine demyelinisierende Polyneuropathie anzeigen kann. Dazu wurden am Universit{\"a}tsklinikum W{\"u}rzburg prospektiv 93 Polyneuropathie-Patienten und 25 Kontrollpersonen rekrutiert. Bei allen Patienten wurden Hautstanzbiospien am Zeigefinger durchgef{\"u}hrt. Bei 35 Patienten mit schweren oder unklaren Verl{\"a}ufen, wurden konsiliarisch Nervus suralis Biopsien durchgef{\"u}hrt. Aus einem Abschnitt von 27 dieser Biopsien, konnten im Rahmen dieser Arbeit Zupfnervenpr{\"a}parate angefertigt und analog zu den Hautbiopsien ausgewertet werden. Aus der Routinediagnostik der Klinik flossen weiterhin die Ergebnisse der elektrophysiologischen Routinediagnostik und der Histologiebefund der Nervus suralis Biopsien in die Auswertung ein. Zusammenfassend kamen ver{\"a}nderte Natriumkanalbanden in Fingerhautbiopsien signifikant h{\"a}ufiger bei Patienten mit elektrophysiologisch als demyelinisierend befundeten Polyneuropathien, als bei Patienten mit elektrophysiologisch als axonal befundeten Polyneuropathien vor. Vielfach fanden sich ver{\"a}nderte Natriumkanalbanden inmitten para- und internodal unauff{\"a}lliger Schn{\"u}rringe und umgekehrt. Diese Beobachtung st{\"u}tzt die bereits in Vorarbeiten vorgeschlagene und in der aktuellen Leitlinie zur Diagnostik f{\"u}r Polyneuropathien aufgegriffene Entit{\"a}t der Paranodopathien (Uncini, Susuki, \& Yuki, 2013). M{\"o}glich w{\"a}re, dass eine ver{\"a}nderte Verteilung der Natriumkan{\"a}le die schnelle Leitf{\"a}higkeit beeintr{\"a}chtigen und somit trotz intakter Bemarkung, elektrophysiologisch das Bild einer demyelinisierenden Neuropathie vermittelt. Ein direkter Zusammenhang zwischen dem Auftreten von doppelten und verl{\"a}ngerten Natriumkanalbanden und einzelnen Messwerten (z.B. Amplituden und Latenzzeiten) fand sich nicht. Auch in den Zupfnervenpr{\"a}paraten der Nervus suralis Biopsien, konnten o.g. Verteilungsmuster untersucht werden. Deren Vorkommen zeigte sich als unabh{\"a}ngig vom elektrophysiologischen und histologischen Befund, von der {\"A}tiologie der PNP und von den gefundenen Ver{\"a}nderungen in den Hautbiopsien des betreffenden Patienten.}, subject = {Polyneuropathie}, language = {de} } @article{DingSeusingNasseroleslamietal.2023, author = {Ding, Hao and Seusing, Nelly and Nasseroleslami, Bahman and Anwar, Abdul Rauf and Strauss, Sebastian and Lotze, Martin and Grothe, Matthias and Groppa, Sergiu and Muthuraman, Muthuraman}, title = {The role of ipsilateral motor network in upper limb movement}, series = {Frontiers in Physiology}, volume = {14}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2023.1199338}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321805}, year = {2023}, abstract = {The execution of voluntary movements is primarily governed by the cerebral hemisphere contralateral to the moving limb. Previous research indicates that the ipsilateral motor network, comprising the primary motor cortex (M1), supplementary motor area (SMA), and premotor cortex (PM), plays a crucial role in the planning and execution of limb movements. However, the precise functions of this network and its interplay in different task contexts have yet to be fully understood. Twenty healthy right-handed participants (10 females, mean age 26.1 ± 4.6 years) underwent functional MRI scans while performing biceps brachii representations such as bilateral, unilateral flexion, and bilateral flexion-extension. Ipsilateral motor evoked potentials (iMEPs) were obtained from the identical set of participants in a prior study using transcranial magnetic stimulation (TMS) targeting M1 while employing the same motor tasks. The voxel time series was extracted based on the region of interest (M1, SMA, ventral PM and dorsal PM). Directed functinal connectivity was derived from the extracted time series using time-resolved partial directed coherence. We found increased connectivity from left-PMv to both sides M1, as well as right-PMv to both sides SMA, in unilateral flexion compared to bilateral flexion. Connectivity from left M1 to left-PMv, and left-SMA to right-PMd, also increased in both unilateral flexion and bilateral flexion-extension compared to bilateral flexion. However, connectivity between PMv and right-M1 to left-PMd decreased during bilateral flexion-extension compared to unilateral flexion. Additionally, during bilateral flexion-extension, the connectivity from right-M1 to right-SMA had a negative relationship with the area ratio of iMEP in the dominant side. Our results provide corroborating evidence for prior research suggesting that the ipsilateral motor network is implicated in the voluntary movements and underscores its involvement in cognitive processes such as movement planning and coordination. Moreover, ipsilateral connectivity from M1 to SMA on the dominant side can modulate the degree of ipsilateral M1 activation during bilateral antagonistic contraction.}, language = {en} } @article{BarlinnWinzerWorthmannetal.2021, author = {Barlinn, J. and Winzer, S. and Worthmann, H. and Urbanek, C. and H{\"a}usler, K. G. and G{\"u}nther, A. and Erdur, H. and G{\"o}rtler, M. and Busetto, L. and Wojciechowski, C. and Schmitt, J. and Shah, Y. and B{\"u}chele, B. and Sokolowski, P. and Kraya, T. and Merkelbach, S. and Rosengarten, B. and Stangenberg-Gliss, K. and Weber, J. and Schlachetzki, F. and Abu-Mugheisib, M. and Petersen, M. and Schwartz, A. and Palm, F. and Jowaed, A. and Volbers, B. and Zickler, P. and Remi, J. and Bardutzky, J. and B{\"o}sel, J. and Audebert, H. J. and Hubert, G. J. and Gumbinger, C.}, title = {Telemedizin in der Schlaganfallversorgung - versorgungsrelevant f{\"u}r Deutschland}, series = {Der Nervenarzt}, volume = {92}, journal = {Der Nervenarzt}, number = {6}, issn = {0028-2804}, doi = {10.1007/s00115-021-01137-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307752}, pages = {593-601}, year = {2021}, abstract = {Hintergrund und Ziel Telemedizinische Schlaganfall-Netzwerke tragen dazu bei, die Schlaganfallversorgung und insbesondere den Zugang zu zeitkritischen Schlaganfalltherapien in vorrangig strukturschwachen, l{\"a}ndlichen Regionen zu gew{\"a}hrleisten. Ziel ist eine Darstellung der Nutzungsfrequenz und regionalen Verteilung dieser Versorgungsstruktur. Methoden Die Kommission „Telemedizinische Schlaganfallversorgung" der Deutschen Schlaganfall-Gesellschaft f{\"u}hrte eine Umfragestudie in allen Schlaganfall-Netzwerken durch. Ergebnisse In Deutschland sind 22 telemedizinische Schlaganfall-Netzwerke aktiv, welche insgesamt 43 Zentren (pro Netzwerk: Median 1,5, Interquartilsabstand [IQA] 1-3) sowie 225 Kooperationskliniken (pro Netzwerk: Median 9, IQA 4-17) umfassen und an einem unmittelbaren Zugang zur Schlaganfallversorgung f{\"u}r 48 Mio. Menschen teilhaben. Im Jahr 2018 wurden 38.211 Telekonsile (pro Netzwerk: Median 1340, IQA 319-2758) durchgef{\"u}hrt. Die Thrombolyserate betrug 14,1 \% (95 \%-Konfidenzintervall 13,6-14,7 \%), eine Verlegung zur Thrombektomie wurde bei 7,9 \% (95 \%-Konfidenzintervall 7,5-8,4 \%) der isch{\"a}mischen Schlaganfallpatienten initiiert. Das Finanzierungssystem ist uneinheitlich mit einem Verg{\"u}tungssystem f{\"u}r die Zentrumsleistungen in nur drei Bundesl{\"a}ndern. Diskussion Etwa jeder 10. Schlaganfallpatient wird telemedizinisch behandelt. Die telemedizinischen Schlaganfall-Netzwerke erreichen vergleichbar hohe Lyseraten und Verlegungen zur Thrombektomie wie neurologische Stroke-Units und tragen zur Sicherstellung einer fl{\"a}chendeckenden Schlaganfallversorgung bei. Eine netzwerk{\"u}bergreifende Sicherstellung der Finanzierung und einheitliche Erhebung von Qualit{\"a}tssicherungsdaten haben das Potenzial diese Versorgungsstruktur zuk{\"u}nftig weiter zu st{\"a}rken.}, language = {de} } @article{GrohAbdelwahabKattimanietal.2023, author = {Groh, Janos and Abdelwahab, Tassnim and Kattimani, Yogita and H{\"o}rner, Michaela and Loserth, Silke and Gudi, Viktoria and Adalbert, Robert and Imdahl, Fabian and Saliba, Antoine-Emmanuel and Coleman, Michael and Stangel, Martin and Simons, Mikael and Martini, Rudolf}, title = {Microglia-mediated demyelination protects against CD8\(^+\) T cell-driven axon degeneration in mice carrying PLP defects}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-42570-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357641}, year = {2023}, abstract = {Axon degeneration and functional decline in myelin diseases are often attributed to loss of myelin but their relation is not fully understood. Perturbed myelinating glia can instigate chronic neuroinflammation and contribute to demyelination and axonal damage. Here we study mice with distinct defects in the proteolipid protein 1 gene that develop axonal damage which is driven by cytotoxic T cells targeting myelinating oligodendrocytes. We show that persistent ensheathment with perturbed myelin poses a risk for axon degeneration, neuron loss, and behavioral decline. We demonstrate that CD8\(^+\) T cell-driven axonal damage is less likely to progress towards degeneration when axons are efficiently demyelinated by activated microglia. Mechanistically, we show that cytotoxic T cell effector molecules induce cytoskeletal alterations within myelinating glia and aberrant actomyosin constriction of axons at paranodal domains. Our study identifies detrimental axon-glia-immune interactions which promote neurodegeneration and possible therapeutic targets for disorders associated with myelin defects and neuroinflammation.}, language = {en} } @article{GunkelSchoetzauFluri2023, author = {Gunkel, Sarah and Sch{\"o}tzau, Andreas and Fluri, Felix}, title = {Burden of cerebral small vessel disease and changes of diastolic blood pressure affect clinical outcome after acute ischemic stroke}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-49502-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357669}, year = {2023}, abstract = {Elevated and low blood pressure (BP) may lead to poor functional outcome after ischemic stroke, which is conflicting. Hence, there must be another factor—such as cerebral small vessel disease (cSVD) -interacting with BP and thus, affecting outcome. Here, we investigate the relationship between BP and cSVD regarding outcome after stroke. Data of 423/503 stroke patients were prospectively analyzed. Diastolic (DBP) and systolic BP (SBP) were collected on hospital admission (BP\(_{ad}\)) and over the first 72 h (BP\(_{72h}\)). cSVD-burden was determined on MR-scans. Good functional outcome was defined as a modified Rankin Scale score ≤ 2 at hospital discharge and 12 months thereafter. cSVD was a predictor of poor outcome (OR 2.8; p < 0.001). SBPad, DBP\(_{ad}\) and SBP\(_{72h}\) were not significantly associated with outcome at any time. A significant relationship was found between DBP\(_{72h}\), (p < 0.01), cSVD (p = 0.013) and outcome at discharge. At 12 months, we found a relationship between outcome and DBP\(_{72h}\) (p = 0.018) and a statistical tendency regarding cSVD (p = 0.08). Changes in DBP72h were significantly related with outcome. There was a U-shaped relationship between DBP\(_{72h}\) and outcome at discharge. Our results suggest an individualized stroke care by either lowering or elevating DBP depending on cSVD-burden in order to influence functional outcome.}, language = {en} } @article{OdorferYabeHiewetal.2023, author = {Odorfer, Thorsten M. and Yabe, Marie and Hiew, Shawn and Volkmann, Jens and Zeller, Daniel}, title = {Topological differences and confounders of mental rotation in cervical dystonia and blepharospasm}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-33262-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357713}, year = {2023}, abstract = {Mental rotation (mR) bases on imagination of actual movements. It remains unclear whether there is a specific pattern of mR impairment in focal dystonia. We aimed to investigate mR in patients with cervical dystonia (CD) and blepharospasm (BS) and to assess potential confounders. 23 CD patients and 23 healthy controls (HC) as well as 21 BS and 19 hemifacial spasm (HS) patients were matched for sex, age, and education level. Handedness, finger dexterity, general reaction time, and cognitive status were assessed. Disease severity was evaluated by clinical scales. During mR, photographs of body parts (head, hand, or foot) and a non-corporal object (car) were displayed at different angles rotated within their plane. Subjects were asked to judge laterality of the presented image by keystroke. Both speed and correctness were evaluated. Compared to HC, CD and HS patients performed worse in mR of hands, whereas BS group showed comparable performance. There was a significant association of prolonged mR reaction time (RT) with reduced MoCA scores and with increased RT in an unspecific reaction speed task. After exclusion of cognitively impaired patients, increased RT in the mR of hands was confined to CD group, but not HS. While the question of whether specific patterns of mR impairment reliably define a dystonic endophenotype remains elusive, our findings point to mR as a useful tool, when used carefully with control measures and tasks, which may be capable of identifying specific deficits that distinguish between subtypes of dystonia.}, language = {en} } @article{KuzkinaRoessleSegeretal.2023, author = {Kuzkina, A. and R{\"o}ßle, J. and Seger, A. and Panzer, C. and Kohl, A. and Maltese, V. and Musacchio, T. and Blaschke, S. J. and Tamg{\"u}ney, G. and Kaulitz, S. and Rak, K. and Scherzad, A. and Zimmermann, P. H. and Klussmann, J. P. and Hackenberg, S. and Volkmann, J. and Sommer, C. and Sommerauer, M. and Doppler, K.}, title = {Combining skin and olfactory α-synuclein seed amplification assays (SAA)—towards biomarker-driven phenotyping in synucleinopathies}, series = {npj Parkinson's Disease}, volume = {9}, journal = {npj Parkinson's Disease}, issn = {2373-8057}, doi = {10.1038/s41531-023-00519-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357687}, year = {2023}, abstract = {Seed amplification assays (SAA) are becoming commonly used in synucleinopathies to detect α-synuclein aggregates. Studies in Parkinson's disease (PD) and isolated REM-sleep behavior disorder (iRBD) have shown a considerably lower sensitivity in the olfactory epithelium than in CSF or skin. To get an insight into α-synuclein (α-syn) distribution within the nervous system and reasons for low sensitivity, we compared SAA assessment of nasal brushings and skin biopsies in PD (n = 27) and iRBD patients (n = 18) and unaffected controls (n = 30). α-syn misfolding was overall found less commonly in the olfactory epithelium than in the skin, which could be partially explained by the nasal brushing matrix exerting an inhibitory effect on aggregation. Importantly, the α-syn distribution was not uniform: there was a higher deposition of misfolded α-syn across all sampled tissues in the iRBD cohort compared to PD (supporting the notion of RBD as a marker of a more malignant subtype of synucleinopathy) and in a subgroup of PD patients, misfolded α-syn was detectable only in the olfactory epithelium, suggestive of the recently proposed brain-first PD subtype. Assaying α-syn of diverse origins, such as olfactory (part of the central nervous system) and skin (peripheral nervous system), could increase diagnostic accuracy and allow better stratification of patients.}, language = {en} } @article{McFlederMakhotkinaGrohetal.2023, author = {McFleder, Rhonda L. and Makhotkina, Anastasiia and Groh, Janos and Keber, Ursula and Imdahl, Fabian and Pe{\~n}a Mosca, Josefina and Peteranderl, Alina and Wu, Jingjing and Tabuchi, Sawako and Hoffmann, Jan and Karl, Ann-Kathrin and Pagenstecher, Axel and Vogel, J{\"o}rg and Beilhack, Andreas and Koprich, James B. and Brotchie, Jonathan M. and Saliba, Antoine-Emmanuel and Volkmann, Jens and Ip, Chi Wang}, title = {Brain-to-gut trafficking of alpha-synuclein by CD11c\(^+\) cells in a mouse model of Parkinson's disease}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-43224-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357696}, year = {2023}, abstract = {Inflammation in the brain and gut is a critical component of several neurological diseases, such as Parkinson's disease (PD). One trigger of the immune system in PD is aggregation of the pre-synaptic protein, α-synuclein (αSyn). Understanding the mechanism of propagation of αSyn aggregates is essential to developing disease-modifying therapeutics. Using a brain-first mouse model of PD, we demonstrate αSyn trafficking from the brain to the ileum of male mice. Immunohistochemistry revealed that the ileal αSyn aggregations are contained within CD11c+ cells. Using single-cell RNA sequencing, we demonstrate that ileal CD11c\(^+\) cells are microglia-like and the same subtype of cells is activated in the brain and ileum of PD mice. Moreover, by utilizing mice expressing the photo-convertible protein, Dendra2, we show that CD11c\(^+\) cells traffic from the brain to the ileum. Together these data provide a mechanism of αSyn trafficking between the brain and gut.}, language = {en} } @article{GriebelSegebarthSteinetal.2023, author = {Griebel, Matthias and Segebarth, Dennis and Stein, Nikolai and Schukraft, Nina and Tovote, Philip and Blum, Robert and Flath, Christoph M.}, title = {Deep learning-enabled segmentation of ambiguous bioimages with deepflash2}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-36960-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357286}, year = {2023}, abstract = {Bioimages frequently exhibit low signal-to-noise ratios due to experimental conditions, specimen characteristics, and imaging trade-offs. Reliable segmentation of such ambiguous images is difficult and laborious. Here we introduce deepflash2, a deep learning-enabled segmentation tool for bioimage analysis. The tool addresses typical challenges that may arise during the training, evaluation, and application of deep learning models on ambiguous data. The tool's training and evaluation pipeline uses multiple expert annotations and deep model ensembles to achieve accurate results. The application pipeline supports various use-cases for expert annotations and includes a quality assurance mechanism in the form of uncertainty measures. Benchmarked against other tools, deepflash2 offers both high predictive accuracy and efficient computational resource usage. The tool is built upon established deep learning libraries and enables sharing of trained model ensembles with the research community. deepflash2 aims to simplify the integration of deep learning into bioimage analysis projects while improving accuracy and reliability.}, language = {en} } @article{IpWischhusen2023, author = {Ip, Chi Wang and Wischhusen, J{\"o}rg}, title = {Versatile guardians: regenerative regulatory T cells in Parkinson's disease rodent models}, series = {Signal Transduction and Targeted Therapy}, volume = {8}, journal = {Signal Transduction and Targeted Therapy}, doi = {10.1038/s41392-023-01681-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357674}, year = {2023}, abstract = {No abstract available.}, language = {en} } @article{JaenschEvdokimovEgenolfetal.2024, author = {J{\"a}nsch, Sarah and Evdokimov, Dimitar and Egenolf, Nadine and Meyer zu Altenschildesche, Caren and Kreß, Luisa and {\"U}{\c{c}}eyler, Nurcan}, title = {Distinguishing fibromyalgia syndrome from small fiber neuropathy: a clinical guide}, series = {Pain Reports}, volume = {9}, journal = {Pain Reports}, number = {1}, doi = {10.1097/PR9.0000000000001136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350306}, year = {2024}, abstract = {Introduction: Fibromyalgia syndrome (FMS) and small fiber neuropathy (SFN) are distinct pain conditions that share commonalities and may be challenging as for differential diagnosis. Objective: To comprehensively investigate clinical characteristics of women with FMS and SFN to determine clinically applicable parameters for differentiation. Methods: We retrospectively analyzed medical records of 158 women with FMS and 53 with SFN focusing on pain-specific medical and family history, accompanying symptoms, additional diseases, and treatment. We investigated data obtained using standardized pain, depression, and anxiety questionnaires. We further analyzed test results and findings obtained in standardized small fiber tests. Results: FMS patients were on average ten years younger at symptom onset, described higher pain intensities requiring frequent change of pharmaceutics, and reported generalized pain compared to SFN. Pain in FMS was accompanied by irritable bowel or sleep disturbances, and in SFN by paresthesias, numbness, and impaired glucose metabolism (P < 0.01 each). Family history was informative for chronic pain and affective disorders in FMS (P < 0.001) and for neurological disorders in SFN patients (P < 0.001). Small fiber pathology in terms of skin denervation and/or thermal sensory threshold elevation was present in 110/158 (69.7 \%) FMS patients and 39/53 (73.6 \%) SFN patients. FMS patients mainly showed proximally reduced skin innervation and higher corneal nerve branch densities (p<0.001) whereas SFN patients were characterized by reduced cold detection and prolonged electrical A-delta conduction latencies (P < 0.05). Conclusions: Our data show that FMS and SFN differ substantially. Detailed pain, drug and family history, investigating blood glucose metabolism, and applying differential small fiber tests may help to improve diagnostic differentiation and targeted therapy.}, language = {en} } @article{BreyerGruenerKleinetal.2024, author = {Breyer, Maximilian and Gr{\"u}ner, Julia and Klein, Alexandra and Finke, Laura and Klug, Katharina and Sauer, Markus and {\"U}{\c{c}}eyler, Nurcan}, title = {\(In\) \(vitro\) characterization of cells derived from a patient with the GLA variant c.376A>G (p.S126G) highlights a non-pathogenic role in Fabry disease}, series = {Molecular Genetics and Metabolism Reports}, volume = {38}, journal = {Molecular Genetics and Metabolism Reports}, issn = {22144269}, doi = {10.1016/j.ymgmr.2023.101029}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350295}, year = {2024}, abstract = {Highlights • The GLA variant S126G is not associated with Fabry symptoms in the presented case • S126G has no effect on α-GAL A activity or Gb3 levels in this patient • S126G sensory neurons show no electrophysiological abnormalities Abstract Fabry disease (FD) is a life-limiting disorder characterized by intracellular globotriaosylceramide (Gb3) accumulations. The underlying α-galactosidase A (α-GAL A) deficiency is caused by variants in the gene GLA. Variants of unknown significance (VUS) are frequently found in GLA and challenge clinical management. Here, we investigated a 49-year old man with cryptogenic lacunar cerebral stroke and the chance finding of the VUS S126G, who was sent to our center for diagnosis and initiation of a costly and life-long FD-specific treatment. We combined clinical examination with in vitro investigations of dermal fibroblasts (HDF), induced pluripotent stem cells (iPSC), and iPSC-derived sensory neurons. We analyzed α-GAL A activity in iPSC, Gb3 accumulation in all three cell types, and action potential firing in sensory neurons. Neurological examination and small nerve fiber assessment was normal except for reduced distal skin innervation. S126G iPSC showed normal α-GAL A activity compared to controls and no Gb3 deposits were found in all three cell types. Baseline electrophysiological characteristics of S126G neurons showed no difference compared to healthy controls as investigated by patch-clamp recordings. We pioneer multi-level cellular characterization of the VUS S126G using three cell types derived from a patient and provide further evidence for the benign nature of S126G in GLA, which is of great importance in the management of such cases in clinical practice.}, language = {en} } @article{BinderLangePozzietal.2023, author = {Binder, Tobias and Lange, Florian and Pozzi, Nicol{\`o} and Musacchio, Thomas and Daniels, Christine and Odorfer, Thorsten and Fricke, Patrick and Matthies, Cordula and Volkmann, Jens and Capetian, Philipp}, title = {Feasibility of local field potential-guided programming for deep brain stimulation in Parkinson's disease: a comparison with clinical and neuro-imaging guided approaches in a randomized, controlled pilot trial}, series = {Brain Stimulation}, volume = {16}, journal = {Brain Stimulation}, number = {5}, doi = {10.1016/j.brs.2023.08.017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350280}, pages = {1243-1251}, year = {2023}, abstract = {Highlights • Beta-Guided programming is an innovative approach that may streamline the programming process for PD patients with STN DBS. • While preliminary findings from our study suggest that Beta Titration may potentially mitigate STN overstimulation and enhance symptom control, • Our results demonstrate that beta-guided programming significantly reduces programming time, suggesting it could be efficiently integrated into routine clinical practice using a commercially available patient programmer. Background Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for advanced Parkinson's disease (PD). Clinical outcomes after DBS can be limited by poor programming, which remains a clinically driven, lengthy and iterative process. Electrophysiological recordings in PD patients undergoing STN-DBS have shown an association between STN spectral power in the beta frequency band (beta power) and the severity of clinical symptoms. New commercially-available DBS devices now enable the recording of STN beta oscillations in chronically-implanted PD patients, thereby allowing investigation into the use of beta power as a biomarker for DBS programming. Objective To determine the potential advantages of beta-guided DBS programming over clinically and image-guided programming in terms of clinical efficacy and programming time. Methods We conducted a randomized, blinded, three-arm, crossover clinical trial in eight Parkinson's patients with STN-DBS who were evaluated three months after DBS surgery. We compared clinical efficacy and time required for each DBS programming paradigm, as well as DBS parameters and total energy delivered between the three strategies (beta-, clinically- and image-guided). Results All three programming methods showed similar clinical efficacy, but the time needed for programming was significantly shorter for beta- and image-guided programming compared to clinically-guided programming (p < 0.001). Conclusion Beta-guided programming may be a useful and more efficient approach to DBS programming in Parkinson's patients with STN-DBS. It takes significantly less time to program than traditional clinically-based programming, while providing similar symptom control. In addition, it is readily available within the clinical DBS programmer, making it a valuable tool for improving current clinical practice.}, language = {en} } @article{WiesslerTalucciPiroetal.2024, author = {Wiessler, Anna-Lena and Talucci, Ivan and Piro, Inken and Seefried, Sabine and H{\"o}rlin, Verena and Baykan, Bet{\"u}l B. and T{\"u}z{\"u}n, Erdem and Schaefer, Natascha and Maric, Hans M. and Sommer, Claudia and Villmann, Carmen}, title = {Glycine receptor β-targeting autoantibodies contribute to the pathology of autoimmune diseases}, series = {Neurology: Neuroimmunology \& Neuroinflammation}, volume = {11}, journal = {Neurology: Neuroimmunology \& Neuroinflammation}, number = {2}, doi = {10.1212/NXI.0000000000200187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349958}, year = {2024}, abstract = {Background and Objectives Stiff-person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM) are rare neurologic disorders of the CNS. Until now, exclusive GlyRα subunit-binding autoantibodies with subsequent changes in function and surface numbers were reported. GlyR autoantibodies have also been described in patients with focal epilepsy. Autoimmune reactivity against the GlyRβ subunits has not yet been shown. Autoantibodies against GlyRα1 target the large extracellular N-terminal domain. This domain shares a high degree of sequence homology with GlyRβ making it not unlikely that GlyRβ-specific autoantibody (aAb) exist and contribute to the disease pathology. Methods In this study, we investigated serum samples from 58 patients for aAb specifically detecting GlyRβ. Studies in microarray format, cell-based assays, and primary spinal cord neurons and spinal cord tissue immunohistochemistry were performed to determine specific GlyRβ binding and define aAb binding to distinct protein regions. Preadsorption approaches of aAbs using living cells and the purified extracellular receptor domain were further used. Finally, functional consequences for inhibitory neurotransmission upon GlyRβ aAb binding were resolved by whole-cell patch-clamp recordings. Results Among 58 samples investigated, cell-based assays, tissue analysis, and preadsorption approaches revealed 2 patients with high specificity for GlyRβ aAb. Quantitative protein cluster analysis demonstrated aAb binding to synaptic GlyRβ colocalized with the scaffold protein gephyrin independent of the presence of GlyRα1. At the functional level, binding of GlyRβ aAb from both patients to its target impair glycine efficacy. Discussion Our study establishes GlyRβ as novel target of aAb in patients with SPS/PERM. In contrast to exclusively GlyRα1-positive sera, which alter glycine potency, aAbs against GlyRβ impair receptor efficacy for the neurotransmitter glycine. Imaging and functional analyses showed that GlyRβ aAbs antagonize inhibitory neurotransmission by affecting receptor function rather than localization.}, language = {en} } @article{GschmackMonoranuMaroufetal.2022, author = {Gschmack, Eva and Monoranu, Camelia-Maria and Marouf, Hecham and Meyer, Sarah and Lessel, Lena and Idris, Raja and Berg, Daniela and Maetzler, Walter and Steigerwald, Frank and Volkmann, Jens and Gerlach, Manfred and Riederer, Peter and Koutsilieri, Eleni and Scheller, Carsten}, title = {Plasma autoantibodies to glial fibrillary acidic protein (GFAP) react with brain areas according to Braak staging of Parkinson's disease}, series = {Journal of Neural Transmission}, volume = {129}, journal = {Journal of Neural Transmission}, number = {5-6}, doi = {10.1007/s00702-022-02495-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325161}, pages = {545-555}, year = {2022}, abstract = {Idiopathic Parkinson's disease (PD) is characterized by a progredient degeneration of the brain, starting at deep subcortical areas such as the dorsal motor nucleus of the glossopharyngeal and vagal nerves (DM) (stage 1), followed by the coeruleus-subcoeruleus complex; (stage 2), the substantia nigra (SN) (stage 3), the anteromedial temporal mesocortex (MC) (stage 4), high-order sensory association areas and prefrontal fields (HC) (stage 5) and finally first-order sensory association areas, premotor areas, as well as primary sensory and motor field (FC) (stage 6). Autoimmunity might play a role in PD pathogenesis. Here we analyzed whether anti-brain autoantibodies differentially recognize different human brain areas and identified autoantigens that correlate with the above-described dissemination of PD pathology in the brain. Brain tissue was obtained from deceased individuals with no history of neurological or psychiatric disease and no neuropathological abnormalities. Tissue homogenates from different brain regions (DM, SN, MC, HC, FC) were subjected to SDS-PAGE and Western blot. Blots were incubated with plasma samples from 30 PD patients and 30 control subjects and stained with anti-IgG antibodies to detect anti-brain autoantibodies. Signals were quantified. Prominent autoantigens were identified by 2D-gel-coupled mass spectrometry sequencing. Anti-brain autoantibodies are frequent and occur both in healthy controls and individuals with PD. Glial fibrillary acidic protein (GFAP) was identified as a prominent autoantigen recognized in all plasma samples. GFAP immunoreactivity was highest in DM areas and lowest in FC areas with no significant differences in anti-GFAP autoantibody titers between healthy controls and individuals with PD. The anti-GFAP autoimmunoreactivity of different brain areas correlates with the dissemination of histopathological neurodegeneration in PD. We hypothesize that GFAP autoantibodies are physiological but might be involved as a cofactor in PD pathogenesis secondary to a leakage of the blood-brain barrier.}, language = {en} } @phdthesis{Knorr2024, author = {Knorr, Susanne}, title = {Pathophysiology of early-onset isolated dystonia in a DYT-TOR1A rat model with trauma-induced dystonia-like movements}, doi = {10.25972/OPUS-20609}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206096}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Early-onset torsion dystonia (DYT-TOR1A, DYT1) is an inherited hyperkinetic movement disorder caused by a mutation of the TOR1A gene encoding the torsinA protein. DYT-TOR1A is characterized as a network disorder of the central nervous system (CNS), including predominantly the cortico-basal ganglia-thalamo-cortical loop resulting in a severe generalized dystonic phenotype. The pathophysiology of DYTTOR1A is not fully understood. Molecular levels up to large-scale network levels of the CNS are suggested to be affected in the pathophysiology of DYT-TOR1A. The reduced penetrance of 30\% - 40\% indicates a gene-environmental interaction, hypothesized as "second hit". The lack of appropriate and phenotypic DYT-TOR1A animal models encouraged us to verify the "second hit" hypothesis through a unilateral peripheral nerve trauma of the sciatic nerve in a transgenic asymptomatic DYT-TOR1A rat model (∆ETorA), overexpressing the human mutated torsinA protein. In a multiscale approach, this animal model was characterized phenotypically and pathophysiologically. Nerve-injured ∆ETorA rats revealed dystonia-like movements (DLM) with a partially generalized phenotype. A physiomarker of human dystonia, describing increased theta oscillation in the globus pallidus internus (GPi), was found in the entopeduncular nucleus (EP), the rodent equivalent to the human GPi, of nerve-injured ∆ETorA rats. Altered oscillation patterns were also observed in the primary motor cortex. Highfrequency stimulation (HFS) of the EP reduced DLM and modulated altered oscillatory activity in the EP and primary motor cortex in nerve-injured ∆ETorA rats. Moreover, the dopaminergic system in ∆ETorA rats demonstrated a significant increased striatal dopamine release and dopamine turnover. Whole transcriptome analysis revealed differentially expressed genes of the circadian clock and the energy metabolism, thereby pointing towards novel, putative pathways in the pathophysiology of DYTTOR1A dystonia. In summary, peripheral nerve trauma can trigger DLM in genetically predisposed asymptomatic ΔETorA rats leading to neurobiological alteration in the central motor network on multiple levels and thereby supporting the "second hit" hypothesis. This novel symptomatic DYT-TOR1A rat model, based on a DYT-TOR1A genetic background, may prove as a valuable chance for DYT-TOR1A dystonia, to further investigate the pathomechanism in more detail and to establish new treatment strategies.}, subject = {Dystonie}, language = {en} }