@article{WurdackLundtKlaasetal.2017, author = {Wurdack, Matthias and Lundt, Nils and Klaas, Martin and Baumann, Vasilij and Kavokin, Alexey V. and H{\"o}fling, Sven and Schneider, Christian}, title = {Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe\(_{2}\) monolayer}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {259}, doi = {10.1038/s41467-017-00155-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170480}, year = {2017}, abstract = {Strong light matter coupling between excitons and microcavity photons, as described in the framework of cavity quantum electrodynamics, leads to the hybridization of light and matter excitations. The regime of collective strong coupling arises, when various excitations from different host media are strongly coupled to the same optical resonance. This leads to a well-controllable admixture of various matter components in three hybrid polariton modes. Here, we study a cavity device with four embedded GaAs quantum wells hosting excitons that are spectrally matched to the A-valley exciton resonance of a MoSe\(_{2}\) monolayer. The formation of hybrid polariton modes is evidenced in momentum resolved photoluminescence and reflectivity studies. We describe the energy and k-vector distribution of exciton-polaritons along the hybrid modes by a thermodynamic model, which yields a very good agreement with the experiment.}, language = {en} } @article{TriphanJobstAnjorinetal.2017, author = {Triphan, Simon M. F. and Jobst, Bertram J. and Anjorin, Angela and Sedlaczek, Oliver and Wolf, Ursula and Terekhov, Maxim and Hoffmann, Christian and Ley, Sebastian and D{\"u}ber, Christoph and Biederer, J{\"u}rgen and Kauczor, Hans-Ulrich and Jakob, Peter M. and Wielp{\"u}tz, Mark O.}, title = {Reproducibility and comparison of oxygen-enhanced T\(_1\) quantification in COPD and asthma patients}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0172479}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171833}, year = {2017}, abstract = {T\(_1\) maps have been shown to yield useful diagnostic information on lung function in patients with chronic obstructive pulmonary disease (COPD) and asthma, both for native T\(_1\) and ΔT\(_1\), the relative reduction while breathing pure oxygen. As parameter quantification is particularly interesting for longitudinal studies, the purpose of this work was both to examine the reproducibility of lung T\(_1\) mapping and to compare T\(_1\) found in COPD and asthma patients using IRSnapShotFLASH embedded in a full MRI protocol. 12 asthma and 12 COPD patients (site 1) and further 15 COPD patients (site 2) were examined on two consecutive days. In each patient, T\(_1\) maps were acquired in 8 single breath-hold slices, breathing first room air, then pure oxygen. Maps were partitioned into 12 regions each to calculate average values. In asthma patients, the average T\(_{1,RA}\) = 1206ms (room air) was reduced to T\(_{1,O2}\) = 1141ms under oxygen conditions (ΔT\(_1\) = 5.3\%, p < 5⋅10\(^{-4})\), while in COPD patients both native T\(_{1,RA}\) = 1125ms was significantly shorter (p < 10\(^{-3})\) and the relative reduction to T\(_{1,O2}\) = 1081ms on average ΔT\(_1\) = 4.2\%(p < 10\(^{-5}\)). On the second day, with T\(_{1,RA}\) = 1186ms in asthma and T\(_{1,RA}\) = 1097ms in COPD, observed values were slightly shorter on average in all patient groups. ΔT\(_1\) reduction was the least repeatable parameter and varied from day to day by up to 23\% in individual asthma and 30\% in COPD patients. While for both patient groups T\(_1\) was below the values reported for healthy subjects, the T\(_1\) and ΔT\(_1\) found in asthmatics lies between that of the COPD group and reported values for healthy subjects, suggesting a higher blood volume fraction and better ventilation. However, it could be demonstrated that lung T\(_1\) quantification is subject to notable inter-examination variability, which here can be attributed both to remaining contrast agent from the previous day and the increased dependency of lung T\(_1\) on perfusion and thus current lung state.}, language = {en} } @phdthesis{Then2017, author = {Then, Patrick}, title = {Waveguide-based single molecule detection in flow}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140548}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In this work fluorescence-based single molecule detection at low concetration is investigated, with an emphasis on the usage of active transport and waveguides. Active transport allows to overcome the limits of diffusion-based systems in terms of the lowest detectable threshold of concentration. The effect of flow in single molecule experiments is investigated and a theoretical model is derived for laminar flow. Waveguides on the other hand promise compact detection schemes and show great potential for their possible integration into lab-on-a-chip applications. Their properties in single molecule experiments are analyzed with help of a method based on the reciprocity theorem of electromagnetic theory.}, subject = {Optik}, language = {en} } @article{SanchezThierschmannMolenkamp2017, author = {S{\´a}nchez, Rafael and Thierschmann, Holger and Molenkamp, Laurens W.}, title = {Single-electron thermal devices coupled to a mesoscopic gate}, series = {New Journal of Physics}, volume = {19}, journal = {New Journal of Physics}, doi = {10.1088/1367-2630/aa8b94}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172982}, year = {2017}, abstract = {We theoretically investigate the propagation of heat currents in a three-terminal quantum dot engine. Electron-electron interactions introduce state-dependent processes which can be resolved by energy-dependent tunneling rates. We identify the relevant transitions which define the operation of the system as a thermal transistor or a thermal diode. In the former case, thermal-induced charge fluctuations in the gate dot modify the thermal currents in the conductor with suppressed heat injection, resulting in huge amplification factors and the possible gating with arbitrarily low energy cost. In the latter case, enhanced correlations of the state-selective tunneling transitions redistribute heat flows giving high rectification coefficients and the unexpected cooling of one conductor terminal by heating the other one. We propose quantum dot arrays as a possible way to achieve the extreme tunneling asymmetries required for the different operations.}, language = {en} } @article{SyperekAndrzejewskiRudnoRudzińskietal.2017, author = {Syperek, M. and Andrzejewski, J. and Rudno-Rudziński, W. and Maryński, A. and Sȩk, G. and Misiewicz, J. and Reithmaier, J. P. and Somers, A. and H{\"o}fling, S.}, title = {The issue of 0D-like ground state isolation in GaAs- and InP-based coupled quantum dots-quantum well systems}, series = {Journal of Physics: Conference Series}, volume = {906}, journal = {Journal of Physics: Conference Series}, number = {1}, issn = {1742-6588}, doi = {10.1088/1742-6596/906/1/012019}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262876}, year = {2017}, abstract = {The issue of quantum mechanical coupling between a semiconductor quantum dot and a quantum well is studied in two families of GaAs- and InP- based structures at cryogenic temperatures. It is shown that by tuning the quantum well parameters one can strongly disturb the 0D-character of the coupled system ground state, initially located in a dot. The out-coupling of either an electron or a hole state from the quantum dot confining potential is viewed by a significant elongation of the photoluminescence decay time constant. Band structure calculations show that in the GaAs-based coupled system at its ground state a hole remains isolated in the dot, whereas an electron gets delocalized towards the quantum well. The opposite picture is built for the ground state of a coupled system based on InP.}, language = {en} } @phdthesis{Swimm2017, author = {Swimm, Katrin}, title = {Experimentelle und theoretische Untersuchungen zur gasdruckabh{\"a}ngigen W{\"a}rmeleitf{\"a}higkeit von por{\"o}sen Materialien}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153887}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Als W{\"a}rmed{\"a}mmstoffe werden {\"u}blicherweise makropor{\"o}se Stoffsysteme wie Sch{\"a}ume, Pul-versch{\"u}ttungen, Faservliese und - wolle eingesetzt. Zus{\"a}tzlich finden mikro- und mesopor{\"o}se D{\"a}mmstoffe wie Aerogele Anwendung. Um effiziente W{\"a}rmed{\"a}mmstoffe entwickeln zu k{\"o}nnen, muss der Gesamtw{\"a}rmetransport in por{\"o}sen Materialien verstanden werden. Die ein-zelnen W{\"a}rmetransport-Mechanismen Festk{\"o}rperw{\"a}rmeleitung, Gasw{\"a}rmeleitung und W{\"a}rme-strahlung k{\"o}nnen zuverl{\"a}ssig analytisch beschrieben werden. Bei manchen por{\"o}sen Materialien liefert jedoch auch eine Wechselwirkung zwischen den verschiedenen W{\"a}rmetransport-Mechanismen, d.h. die Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung, einen hohen Beitrag zur Gesamtw{\"a}rmeleitf{\"a}higkeit. Wie hoch dieser Kopplungseffekt bei einer bestimmten Probe ausf{\"a}llt, kann bisher schwer abgesch{\"a}tzt werden. Um den Kopplungseffekt von Festk{\"o}rper- und Gasw{\"a}rmeleitung besser zu verstehen, sind sowohl experimentelle als auch theoretische Untersuchungen an verschiedenen por{\"o}sen Stoffsystemen erforderlich. Zus{\"a}tzlich kann ein zuverl{\"a}ssiges theoretisches Modell dazu beitragen, die mittlere Porengr{\"o}ße von por{\"o}sen Mate-rialien zerst{\"o}rungsfrei anhand von gasdruckabh{\"a}ngigen W{\"a}rmeleitf{\"a}higkeitsmessungen zu bestimmen. Als Modellsystem f{\"u}r die experimentellen Untersuchungen wurde der hochpor{\"o}se Feststoff Aerogel verwendet, da seine strukturellen Eigenschaften wie Porengr{\"o}ße und Dichte w{\"a}hrend der Synthese gut eingestellt werden k{\"o}nnen. Es wurden Resorcin-Formaldehyd-Aerogele mit mittleren Porengr{\"o}ßen von etwa 600 nm, 1 µm und 8 µm sowie daraus mittels Pyrolyse abge-leitete Kohlenstoff-Aerogele synthetisiert und jeweils hinsichtlich ihrer Struktur und W{\"a}rme-leitf{\"a}higkeiten experimentell charakterisiert. Die Gesamtw{\"a}rmeleitf{\"a}higkeiten dieser Aerogele wurden f{\"u}r verschiedene Gasatmosph{\"a}ren (Kohlenstoffdioxid, Argon, Stickstoff und Helium) in Abh{\"a}ngigkeit vom Gasdruck durch das Hitzdraht-Verfahren bestimmt. Hierf{\"u}r wurde der Messbereich der Hitzdraht-Apparatur des ZAE Bayern mittels einer Druckzelle auf 10 MPa erweitert. Die Messergebnisse zeigen, dass bei allen Aerogel-Proben Festk{\"o}rper- und Gasw{\"a}r-meleitung einen deutlichen Kopplungsbeitrag liefern: Die gemessenen gasdruckabh{\"a}ngigen W{\"a}rmeleitf{\"a}higkeiten sind um Faktor 1,3 bis 3,3 h{\"o}her als die entsprechenden reinen Gas-w{\"a}rmeleitf{\"a}higkeiten. Die jeweilige H{\"o}he h{\"a}ngt sowohl vom verwendeten Gas (Gasw{\"a}rmeleitf{\"a}higkeit) als auch vom Aerogeltyp (Festk{\"o}rperw{\"a}rmeleitf{\"a}higkeit und Festk{\"o}rperstruktur) ab. Ein stark vernetzter Festk{\"o}rper verursacht beispielsweise einen niedrigeren Kopplungsbei-trag als ein weniger stark vernetzter Festk{\"o}rper. Andererseits wurde die gasdruckabh{\"a}ngige W{\"a}rmeleitf{\"a}higkeit von Melaminharzschaum - einem flexiblen, offenporigen und hochpor{\"o}sen Material - in einer evakuierbaren Zwei-Plattenapparatur unter Stickstoff-Atmosph{\"a}re bestimmt. Das Material zeichnet sich dadurch aus, dass die Addition der Einzelw{\"a}rmeleitf{\"a}higkeiten gut erf{\"u}llt ist, d.h. kein Kopplungsef-fekt auftritt. Allerdings konnte gezeigt werden, dass die gestauchte und damit unregelm{\"a}ßige Struktur von Melaminharzschaum die Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung deut-lich beg{\"u}nstigt. Je st{\"a}rker die Melaminharzschaumprobe komprimiert wird, umso st{\"a}rker f{\"a}llt der Kopplungseffekt aus. Bei einer Kompression um 84 \% ist beispielsweise die gemessene gasdruckabh{\"a}ngige W{\"a}rmeleitf{\"a}higkeit bei 0,1 MPa um ca. 17 \% gegen{\"u}ber der effektiven W{\"a}rmeleitf{\"a}higkeit von freiem Stickstoff erh{\"o}ht. Die experimentellen Untersuchungen wurden durch theoretische Betrachtungen erg{\"a}nzt. Zum einen wurde die Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung anhand einer Serienschal-tung der thermischen Widerst{\"a}nde von Festk{\"o}rper- und Gasphase dargestellt, um die Abh{\"a}n-gigkeit von verschiedenen Parametern zu untersuchen. Dadurch konnte gezeigt werden, dass der Kopplungsterm stets von den Verh{\"a}ltnissen aus Festk{\"o}rper- und Gasw{\"a}rmeleitf{\"a}higkeit sowie aus den geometrischen Parametern beider Phasen abh{\"a}ngt. Des Weiteren wurden mit dem Computerprogramm HEAT2 Finite-Differenzen-Simulationen an Modellstrukturen durchgef{\"u}hrt, die f{\"u}r por{\"o}se Stoffsysteme, insbesondere Aerogel, charakteristisch sind (Stege, H{\"a}lse, Windungen und tote Enden). Die simulierten gasdruckabh{\"a}ngigen W{\"a}rmeleitf{\"a}higkeiten zeigen deutlich, dass die Festk{\"o}rperstruktur mit der geringsten Vernetzung, d.h. das tote Ende, am meisten zur Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung beitr{\"a}gt. Dies korre-liert mit den experimentellen Ergebnissen. Dar{\"u}ber hinaus kann man erkennen, dass die Ge-samtw{\"a}rmeleitf{\"a}higkeit eines schlecht vernetzten por{\"o}sen Systems, wo also ein hoher Kopp-lungseffekt (Serienschaltung) auftritt, niemals gr{\"o}ßer wird als die eines gut vernetzten Sys-tems mit gleicher Porosit{\"a}t, wo haupts{\"a}chlich paralleler W{\"a}rmetransport durch beide Phasen stattfindet. Schließlich wurden drei Modelle entwickelt bzw. modifiziert, um die gasdruckabh{\"a}ngige W{\"a}rmeleitf{\"a}higkeit von por{\"o}sen Stoffsystemen theoretisch beschreiben zu k{\"o}nnen. Zun{\"a}chst wurde ein f{\"u}r Kugelsch{\"u}ttungen entwickeltes Modell f{\"u}r Aerogel angepasst, d.h. Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung wurde nur in den L{\"u}cken zwischen zwei benachbarten Partikeln ber{\"u}cksichtigt. Ein Vergleich mit den Messkurven zeigt, dass der ermittelte Kopplungsterm zu gering ausf{\"a}llt. Daher wurde ein bereits existierendes Aerogelmodell mit kubischer Einheitszelle, welches zus{\"a}tzlich Kopplung zwischen den einzelnen Partikelstr{\"a}ngen beinhaltet, verbessert. Auch dieses Modell liefert keine zufriedenstellende {\"U}bereinstimmung mit den Messwerten, denn der Kopplungsbeitrag wird immer noch untersch{\"a}tzt. Das liegt daran, dass die gew{\"a}hlte regelm{\"a}ßige kubische Struktur f{\"u}r Aerogel zu ungenau ist. So geht bei der Berechnung des Kopplungsterms der bereits erw{\"a}hnte hohe Beitrag durch tote Enden (und auch Windungen) verloren. Erfahrungsgem{\"a}ß k{\"o}nnen jedoch alle f{\"u}r Aerogel erhaltenen gasdruckabh{\"a}ngigen Messkurven mit dem sogenannten Skalierungsmodell relativ gut beschrieben werden. Das entspricht dem Knudsen-Modell f{\"u}r reine Gasw{\"a}rmeleitung, welches mit einem konstanten Faktor skaliert wird. Die Anwendung dieses einfachen Modells auf die Messdaten hat gezeigt, dass die Akkommodationskoeffizienten von Helium in Aerogel deut-lich h{\"o}her sind als die Literaturwerte (ca. 0,3 auf Metalloberfl{\"a}chen): In den vermessenen RF- und Kohlenstoff-Aerogelen lassen sich Akkommodationskoeffizienten nahe 1 f{\"u}r Helium ab-leiten. Dar{\"u}ber hinaus ist das Skalierungsmodell gut geeignet, die mittleren Porengr{\"o}ßen por{\"o}ser Materialien zuverl{\"a}ssig aus gasdruckabh{\"a}ngig gemessenen W{\"a}rmeleitf{\"a}higkeitskurven zu bestimmen. Dies stellt somit eine unkomplizierte und zerst{\"o}rungsfreie Charakterisierungsmethode dar.}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {de} } @article{SuchomelBrodbeckLiewetal.2017, author = {Suchomel, H. and Brodbeck, S. and Liew, T. C. H. and Amthor, M. and Klaas, M. and Klembt, S. and Kamp, M. and H{\"o}fling, S. and Schneider, C.}, title = {Prototype of a bistable polariton field-effect transistor switch}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {5114}, doi = {10.1038/s41598-017-05277-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158323}, year = {2017}, abstract = {Microcavity exciton polaritons are promising candidates to build a new generation of highly nonlinear and integrated optoelectronic devices. Such devices range from novel coherent light emitters to reconfigurable potential landscapes for electro-optical polariton-lattice based quantum simulators as well as building blocks of optical logic architectures. Especially for the latter, the strongly interacting nature of the light-matter hybrid particles has been used to facilitate fast and efficient switching of light by light, something which is very hard to achieve with weakly interacting photons. We demonstrate here that polariton transistor switches can be fully integrated in electro-optical schemes by implementing a one-dimensional polariton channel which is operated by an electrical gate rather than by a control laser beam. The operation of the device, which is the polariton equivalent to a field-effect transistor, relies on combining electro-optical potential landscape engineering with local exciton ionization to control the scattering dynamics underneath the gate. We furthermore demonstrate that our device has a region of negative differential resistance and features a completely new way to create bistable behavior.}, language = {en} } @article{StrasserSchrauthDembskietal.2017, author = {Straßer, Marion and Schrauth, Joachim H. X. and Dembski, Sofia and Haddad, Daniel and Ahrens, Bernd and Schweizer, Stefan and Christ, Bastian and Cubukova, Alevtina and Metzger, Marco and Walles, Heike and Jakob, Peter M. and Sextl, Gerhard}, title = {Calcium fluoride based multifunctional nanoparticles for multimodal imaging}, series = {Beilstein Journal of Nanotechnology}, volume = {8}, journal = {Beilstein Journal of Nanotechnology}, doi = {10.3762/bjnano.8.148}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170657}, pages = {1484-1493}, year = {2017}, abstract = {New multifunctional nanoparticles (NPs) that can be used as contrast agents (CA) in different imaging techniques, such as photoluminescence (PL) microscopy and magnetic resonance imaging (MRI), open new possibilities for medical imaging, e.g., in the fields of diagnostics or tissue characterization in regenerative medicine. The focus of this study is on the synthesis and characterization of CaF\(_{2}\):(Tb\(^{3+}\),Gd\(^{3+}\)) NPs. Fabricated in a wet-chemical procedure, the spherical NPs with a diameter of 5-10 nm show a crystalline structure. Simultaneous doping of the NPs with different lanthanide ions, leading to paramagnetism and fluorescence, makes them suitable for MR and PL imaging. Owing to the Gd\(^{3+}\) ions on the surface, the NPs reduce the MR T\(_{1}\) relaxation time constant as a function of their concentration. Thus, the NPs can be used as a MRI CA with a mean relaxivity of about r = 0.471 mL·mg\(^{-1}\)·s\(^{-1}\). Repeated MRI examinations of four different batches prove the reproducibility of the NP synthesis and determine the long-term stability of the CAs. No cytotoxicity of NP concentrations between 0.5 and 1 mg·mL\(^{-1}\) was observed after exposure to human dermal fibroblasts over 24 h. Overall this study shows, that the CaF\(_{2}\):(Tb\(^{3+}\),Gd\(^{3+}\)) NPs are suitable for medical imaging.}, language = {en} } @phdthesis{Stender2017, author = {Stender, Benedikt}, title = {Einzelphotonenemitter und ihre Wechselwirkung mit Ladungstr{\"a}gern in organischen Leuchtdioden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150913}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In dieser Arbeit wird die Photophysik von Einzelphotonenemittern unterschiedlicher Materialklassen, wie Fehlstellen in Diamant und Siliziumcarbid sowie organischer Molek{\"u}le bei Raumtemperatur untersucht. Zu diesem Zweck wurde ein hochaufl{\"o}sendes konfokales Mikroskop konzipiert und konstruiert, welches die optische Detektion einzelner Quantensysteme erm{\"o}glicht. Zus{\"a}tzlich werden verschiedene Methoden wie die Rotationsbeschichtung, das Inkjet-Printing und das Inkjet-Etching in Bezug auf die Reproduzierbarkeit und Strukturierbarkeit von organischen Leuchtdioden (OLEDs) verglichen. Im weiteren Verlauf werden die optoelektronischen Prozesse in dotierten OLEDs untersucht, ausgehend von hohen Dotierkonzentrationen bis hin zur Dotierung mit einzelnen Molek{\"u}len. Dadurch kann die Exzitonen-Ladungstr{\"a}ger Wechselwirkung auf und in der Umgebung von r{\"a}umlich isolierten Molek{\"u}len analysiert werden.}, subject = {Einzelphotonenemission}, language = {de} } @article{SkryabinKartashovEgorovetal.2017, author = {Skryabin, D.V. and Kartashov, Y.V. and Egorov, O.A. and Sich, M. and Chana, J.K. and Tapia Rodriguez, L.E. and Walker, P.M. and Clarke, E. and Royall, B. and Skolnick, M.S. and Krizhanovskii, D.N.}, title = {Backward Cherenkov radiation emitted by polariton solitons in a microcavity wire}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, doi = {10.1038/s41467-017-01751-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173046}, year = {2017}, abstract = {Exciton-polaritons in semiconductor microcavities form a highly nonlinear platform to study a variety of effects interfacing optical, condensed matter, quantum and statistical physics. We show that the complex polariton patterns generated by picosecond pulses in microcavity wire waveguides can be understood as the Cherenkov radiation emitted by bright polariton solitons, which is enabled by the unique microcavity polariton dispersion, which has momentum intervals with positive and negative group velocities. Unlike in optical fibres and semiconductor waveguides, we observe that the microcavity wire Cherenkov radiation is predominantly emitted with negative group velocity and therefore propagates backwards relative to the propagation direction of the emitting soliton. We have developed a theory of the microcavity wire polariton solitons and of their Cherenkov radiation and conducted a series of experiments, where we have measured polariton-soliton pulse compression, pulse breaking and emission of the backward Cherenkov radiation.}, language = {en} } @phdthesis{Simin2017, author = {Simin, Dmitrij}, title = {Quantum Sensing with Highly Coherent Spin Centers in Silicon Carbide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156199}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In the present work, the energetic structure and coherence properties of the silicon vacancy point defect in the technologically important material silicon carbide are extensively studied by the optically detected magnetic resonance (ODMR) technique in order to verify its high potential for various quantum applications. In the spin vacancy, unique attributes are arising from the C3v symmetry and the spin-3/2 state, which are not fully described by the standard Hamiltonian of the uniaxial model. Therefore, an advanced Hamiltonian, describing well the appearing phenomena is established and the relevant parameters are experimentally determined. Utilizing these new accomplishments, several quantum metrology techniques are proposed. First, a vector magnetometry scheme, utilizing the appearance of four ODMR lines, allows for simultaneous detection of the magnetic field strength and the tilting angle of the magnetic field from the symmetry axis of the crystal. The second magnetometry protocol utilizes the appearance of energetic level anticrossings (LAC) in the ground state (GS) energy levels. Relying only on the change in photoluminescence in the vicinity of this GSLACs, this all-optical method does not require any radio waves and hence provides a much easier operation with less error sources as for the common magnetometry schemes utilizing quantum points. A similar all-optical method is applied for temperature sensing, utilizing the thermal shift of the zero field splitting and consequently the anticrossing in the excited state (ES). Since the GSLACs show no dependence on temperature, the all-optical magnetometry and thermometry (utilizing the ESLACs) can be conducted subsequently on the same defect. In order to quantify the achievable sensitivity of quantum metrology, as well as to prove the potential of the Si-vacancy in SiC for quantum processing, the coherence properties are investigated by the pulsed ODMR technique. The spin-lattice relaxation time T1 and the spin-spin relaxation time T2 are thoroughly analyzed for their dependence on the external magnetic field and temperature. For actual sensing implementations, it is crucial to obtain the best signal-to-noise ratio without loss in coherence time. Therefore, the irradiation process, by which the defects are created in the crystal, plays a decisive role in the device performance. In the present work, samples irradiated with electrons or neutrons with different fluences and energies, producing different defect densities, are analyzed in regard to their T1 and T2 times at room temperature. Last but not least, a scheme to substantially prolong the T2 coherence time by locking the spin polarization with the dynamic decoupling Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence is applied.}, subject = {Siliciumcarbid}, language = {en} } @article{ShamimMahapatraScappuccietal.2017, author = {Shamim, Saquib and Mahapatra, S. and Scappucci, G. and Klesse, W. M. and Simmons, M. Y. and Ghosh, Arindam}, title = {Dephasing rates for weak localization and universal conductance fluctuations in two dimensional Si: P and Ge: P δ-layers}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {46670}, doi = {10.1038/srep46670}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170934}, year = {2017}, abstract = {We report quantum transport measurements on two dimensional (2D) Si:P and Ge:P δ-layers and compare the inelastic scattering rates relevant for weak localization (WL) and universal conductance fluctuations (UCF) for devices of various doping densities (0.3-2.5 × 10\(^{18}\)m\(^{-2}\)) at low temperatures (0.3-4.2 K). The phase breaking rate extracted experimentally from measurements of WL correction to conductivity and UCF agree well with each other within the entire temperature range. This establishes that WL and UCF, being the outcome of quantum interference phenomena, are governed by the same dephasing rate.}, language = {en} } @article{RyczkoMisiewiczHoflingetal.2017, author = {Ryczko, K. and Misiewicz, J. and Hofling, S. and Kamp, M. and Sęk, G.}, title = {Optimizing the active region of interband cascade lasers for passive mode-locking}, series = {AIP Advances}, volume = {7}, journal = {AIP Advances}, number = {1}, doi = {10.1063/1.4973937}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181790}, year = {2017}, abstract = {The work proposes possible designs of active regions for a mode-locked interband cascade laser emitting in the mid infrared. For that purpose we investigated the electronic structure properties of respectively modified GaSb-based type II W-shaped quantum wells, including the effect of external bias in order to simultaneously fulfil the requirements for both the absorber as well as the gain sections of a device. The results show that introducing multiple InAs layers in type II InAs/GaInSb quantum wells or introducing a tensely-strained GaAsSb layer into "W-shaped" type II QWs offers significant difference in optical transitions' oscillator strengths (characteristic lifetimes) of the two oppositely polarized parts of such a laser, being promising for utilization in mode-locked devices.}, language = {en} } @article{RudnoRudzińskiSyperekAndrezejewskietal.2017, author = {Rudno-Rudziński, W. and Syperek, M. and Andrezejewski, J. and Maryński, A. and Misiewicz, J. and Somers, A. and H{\"o}fling, S. and Reithmaier, J. P. and Sęk, G.}, title = {Carrier delocalization in InAs/InGaAlAs/InP quantum-dash-based tunnel injection system for 1.55 μm emission}, series = {AIP Advances}, volume = {7}, journal = {AIP Advances}, number = {1}, doi = {10.1063/1.4975634}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181787}, year = {2017}, abstract = {We have investigated optical properties of hybrid two-dimensional-zero-dimensional (2D-0D) tunnel structures containing strongly elongated InAs/InP(001) quantum dots (called quantum dashes), emitting at 1.55 μm. These quantum dashes (QDashes) are separated by a 2.3 nm-width barrier from an InGaAs quantum well (QW), lattice matched to InP. We have tailored quantum-mechanical coupling between the states confined in QDashes and a QW by changing the QW thickness. By combining modulation spectroscopy and photoluminescence excitation, we have determined the energies of all relevant optical transitions in the system and proven the carrier transfer from the QW to the QDashes, which is the fundamental requirement for the tunnel injection scheme. A transformation between 0D and mixed-type 2D-0D character of an electron and a hole confinement in the ground state of the hybrid system have been probed by time-resolved photoluminescence that revealed considerable changes in PL decay time with the QW width changes. The experimental discoveries have been explained by band structure calculations in the framework of the eight-band k·p model showing that they are driven by delocalization of the lowest energy hole state. The hole delocalization process from the 0D QDash confinement is unfavorable for optical devices based on such tunnel injection structures.}, language = {en} } @phdthesis{Quast2017, author = {Quast, Jan-Henrik}, title = {Influence of Hot Carriers on Spin Diffusion in Gallium Arsenide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147611}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Since the late 20th century, spintroncis has become a very active field of research [ŽFS04]. The prospect of spin based information technology, featuring strongly decreased energy consumption and possibly quantum-computation capabilities, has fueled this interest. Standard materials, like bulk gallium arsenide (GaAs), have experienced new attention in this context by exhibiting extraordinarily long lifetimes for nonequilibrium spin information, which is an important requirement for efficient spin based information storage and transfer. Another important factor is the lengthscale over which spin information can be transported in a given material and the role of external influences. Both aspects have been studied experimentally with innovative optical methods since the late 1990s by the groups of D. D. AWSHALOM and S. A. CROOKER et al. [KA99, CS05, CFL+05]. Although the pioneering experimental approaches presented by these authors led to a variety of insights into spin propagation, some questions were raised as well. Most prominently, the classical Einstein relation, which connects the mobility and diffusivity of a given particle species, seemed to be violated for electron spins in a bulk semiconductor. In essence, nonequilibrium spins appeared to move (diffuse) faster than the electrons that actually carry the spin. However, this contradiction was masked by the fact, that the material of interest was n-type GaAs with a doping concentration directly at the transition between metallic and insulating behavior (MIT). In this regime, the electron mobility is difficult to determine experimentally. Consequently, it was not a priori obvious that the spin diffusion rates determined by the newly introduced optical methods were in contradiction with established electrical transport data. However, in an attempt to extend the available data of optical spin microscopy, another issue surfaced, concerning the mathematical drift-diffusion model that has been commonly used to evaluate lateral spin density measurements. Upon close investigation, this model appears to have a limited range of applicability, due to systematic discrepancies with the experimental data (chapter 4). These deviations are noticeable in original publications as well, and it is shown in the present work that they originate from the local heating of electrons in the process of optical spin pumping. Based on insights gained during the second half of the 20th century, it is recapitulated why conduction electrons are easily overheated at cryogenic temperatures. The main reason is the poor thermal coupling between electrons and the crystal lattice (chapter 3). Experiments in the present work showed that a significant thermal gradient exists in the conduction band under local optical excitation of electron-hole pairs. This information was used to develop a better mathematical model of spin diffusion, which allowed to derive the diffusivity of the undisturbed system, due to an effective consideration of electron overheating. In this way, spin diffusivities of n-GaAs were obtained as a function of temperature and doping density in the most interesting regime of the metal-insulator-transition. The experiments presented in this work were performed on a series of n-type bulk GaAs samples, which comprised the transition between metallic conductivity and electrical insulation at low temperatures. Local electron temperature gradients were measured by a hyperspectral photoluminescence imaging technique with subsequent evaluation of the electron-acceptor (e,A\$^0\$) line shape. The local density of nonequilibrium conduction electron spins was deduced from scanning magneto-optic Kerr effect microscopy. Numerical evaluations were performed using the finite elements method in combination with a least-squares fitting procedure. Chapter 1 provides an introduction to historical and recent research in the field of spintronics, as far as it is relevant for the understanding of the present work. Chapter 2 summarizes related physical concepts and experimental methods. Here, the main topics are semiconductor optics, relaxation of hot conduction electrons, and the dynamics of nonequilibrium electron spins in semiconductors. Chapter 3 discusses optical heating effects due to local laser excitation of electron-hole pairs. Experimental evaluations of the acceptor-bound-exciton triplet lines led to the conclusion that the crystal lattice is usually not overheated even at high excitation densities. Here, the heat is efficiently dissipated to the bath, due to the good thermal conductivity of the lattice. Furthermore, the heating of the lattice is inherently limited by the weak heat transfer from the electron system, which on the other hand is also the reason why conduction electrons are easily overheated at temperatures below ≈ 30 K. Spatio-spectral imaging of the electron-acceptor-luminescence line shape allowed to trace the thermal gradient within the conduction band under focused laser excitation. A heat-diffusion model was formulated, which reproduces the experimental electron-temperature trend nicely for low-doped GaAs samples of n- and p-type. For high-doped n-type GaAs samples, it could be shown that the lateral electron-temperature profile is well approximated by a Gaussian. This facilitated easy integration of hot electron influence into the mathematical model of spin diffusion. Chapter 4 deals with magneto-optical imaging of optically induced nonequilibrium conduction-electron spins in n-GaAs close to the MIT. First, the spectral dependence of the magneto-optic Kerr effect was examined in the vicinity of the fundamental band gap. Despite the marked differences among the investigated samples, the spectral shape of the Kerr rotation could be described in terms of a simple Lorentz-oscillator model in all cases. Based on this model, the linearity of the Kerr effect with respect to a nonequilibrium spin polarization is demonstrated, which is decisively important for further quantitative evaluations. Furthermore, chapter 4 presents an experimental survey of spin relaxation in n-GaAs at the MIT. Here, the dependence of the spin relaxation time on bath temperature and doping density was deduced from Hanle-MOKE measurements. While all observed trends agree with established literature, the presented results extend the current portfolio by adding a coherent set of data. Finally, diffusion of optically generated nonequilibrium conduction-electron spins was investigated by scanning MOKE microscopy. First, it is demonstrated that the standard diffusion model is inapplicable for data evaluation in certain situations. A systematic survey of the residual deviations between this model and the experimental data revealed that this situation unfortunately persisted in published works. Moreover, the temperature trend of the residual deviations suggests a close connection to the local overheating of conduction electrons. Consequently, a modified diffusion model was developed and evaluated, in order to compensate for the optical heating effect. From this model, much more reliable results were obtained, as compared to the standard diffusion model. Therefore, it was shown conclusively that the commonly reported anomalously large spin diffusivities were at least in parts caused by overheated conduction electrons. In addition to these new insights some experimental and technological enhancements were realized in the course of this work. First, the optical resolution of scanning MOKE microscopy was improved by implementing a novel scanning mechanism, which allows the application of a larger aperture objective than in the usual scheme. Secondly, imaging photoluminescence spectroscopy was employed for spatially resolved electron-temperature measurements. Here, two different implementations were developed: One for lattice-temperature measurements by acceptor-bound exciton luminescence and a second for conduction-electron temperature measurements via the analysis of the electron-acceptor luminescence line shape. It is shown in the present work that the originally stated anomalously high spin diffusivities were caused to a large extent by unwanted optical heating of the electron system. Although an efficient method was found to compensate for the influence of electron heating, it became also evident that the classical Einstein relation was nonetheless violated under the given experimental conditions. In this case however, it could be shown that this discrepancy did not originate from an experimental artifact, but was instead a manifestation of the fermionic nature of conduction electrons.}, subject = {Galliumarsenid}, language = {en} } @article{PollingerSchmittSanderetal.2017, author = {Pollinger, Florian and Schmitt, Stefan and Sander, Dirk and Tian, Zhen and Kirschner, J{\"u}rgen and Vrdoljak, Pavo and Stadler, Christoph and Maier, Florian and Marchetto, Helder and Schmidt, Thomas and Sch{\"o}ll, Achim and Umbach, Eberhard}, title = {Nanoscale patterning, macroscopic reconstruction, and enhanced surface stress by organic adsorption on vicinal surfaces}, series = {New Journal of Physics}, volume = {19}, journal = {New Journal of Physics}, doi = {10.1088/1367-2630/aa55b8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171947}, year = {2017}, abstract = {Self-organization is a promising method within the framework of bottom-up architectures to generate nanostructures in an efficient way. The present work demonstrates that self- organization on the length scale of a few to several tens of nanometers can be achieved by a proper combination of a large (organic) molecule and a vicinal metal surface if the local bonding of the molecule on steps is significantly stronger than that on low-index surfaces. In this case thermal annealing may lead to large mass transport of the subjacent substrate atoms such that nanometer-wide and micrometer-long molecular stripes or other patterns are being formed on high-index planes. The formation of these patterns can be controlled by the initial surface orientation and adsorbate coverage. The patterns arrange self-organized in regular arrays by repulsive mechanical interactions over long distances accompanied by a significant enhancement of surface stress. We demonstrate this effect using the planar organic molecule PTCDA as adsorbate and Ag(10 8 7) and Ag(775)surfaces as substrate. The patterns are directly observed by STM, the formation of vicinal surfaces is monitored by highresolution electron diffraction, the microscopic surface morphology changes are followed by spectromicroscopy, and the macroscopic changes of surface stress are measured by a cantilever bending method. The in situ combination of these complementary techniques provides compelling evidence for elastic interaction and a significant stress contribution to long-range order and nanopattern formation.}, language = {en} } @phdthesis{Pakkayil2017, author = {Pakkayil, Shijin Babu}, title = {Towards ferromagnet/superconductor junctions on graphene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153863}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This thesis reports a successful fabrication and characterisation of ferromagnetic/superconductor junction (F/S) on graphene. The thesis preposes a fabrication method to produce F/S junctions on graphene which make use of ALD grown Al2O3 as the tunnel barrier for the ferromagnetic contacts. Measurements done on F/G/S/G/F suggests that by injecting spin polarised current into the superconductor, a spin imbalance is created in the quasiparticle density of states of the superconductor which then diffuses through the graphene channel. The observed characteristic curves are similar to the ones which are already reported on metallic ferromagnet/superconductor junctions where the spin imbalance is created using Zeeman splitting. Further measurements also show that the curves loose their characteristic shapes when the temperature is increased above the critical temperature (Tc) or when the external magnetic field is higher then the critical field (Hc) of the superconducting contact. But to prove conclusively and doubtlessly the existence of spin imbalance in ferromagnet/superconductor junctions on graphene, more devices have to be made and characterised preferably in a dilution refrigerator.}, subject = {Graphen}, language = {en} } @article{MinGothLutzetal.2017, author = {Min, Chul-Hee and Goth, F. and Lutz, P. and Bentmann, H. and Kang, B.Y. and Cho, B.K. and Werner, J. and Chen, K.-S. and Assaad, F. and Reinert, F.}, title = {Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB\(_{6}\)}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {11980}, doi = {10.1038/s41598-017-12080-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170328}, year = {2017}, abstract = {Paramagnetic heavy fermion insulators consist of fully occupied quasiparticle bands inherent to Fermi liquid theory. The gap emergence below a characteristic temperature is the ultimate sign of coherence for a many-body system, which in addition can induce a non-trivial band topology. Here, we demonstrate a simple and efficient method to compare a model study and an experimental result for heavy fermion insulators. The temperature dependence of the gap formation in both local moment and mixed valence regimes is captured within the dynamical mean field (DMFT) approximation to the periodic Anderson model (PAM). Using the topological coherence temperature as the scaling factor and choosing the input parameter set within the mixed valence regime, we can unambiguously link the theoretical energy scales to the experimental ones. As a particularly important result, we find improved consistency between the scaled DMFT density of states and the photoemission near-gap spectra of samarium hexaboride (SmB\(_{6}\)).}, language = {en} } @phdthesis{Maier2017, author = {Maier, Sebastian}, title = {Quantenpunktbasierte Einzelphotonenquellen und Licht-Materie-Schnittstellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152972}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Die Quanteninformationstechnologie ist ein Schwerpunkt intensiver weltweiter Forschungsarbeit, da sie L{\"o}sungen f{\"u}r aktuelle globale Probleme verspricht. So bietet die Quantenkommunikation (QKD, engl. quantum key distribution) absolut abh{\"o}rsichere Kommunikationsprotokolle und k{\"o}nnte, mit der Realisierung von Quantenrepeatern, auch {\"u}ber große Distanzen zum Einsatz kommen. Quantencomputer (engl. quantum computing) k{\"o}nnten von Nutzen sein, um sehr schwierige und komplexe mathematische Probleme schneller zu l{\"o}sen. Ein grundlegender kritischer Baustein der gesamten halbleiterbasierten Quanteninformationsverarbeitung (QIP, engl. quantum information processing) ist die Bereitstellung von Proben, die einerseits die geforderten physikalischen Eigenschaften aufweisen und andererseits den Anforderungen der komplexen Messtechnik gen{\"u}gen, um die Quanteneigenschaften nachzuweisen und technologisch nutzbar machen zu k{\"o}nnen. In halbleiterbasierten Ans{\"a}tzen haben sich Quantenpunkte als sehr vielversprechende Kandidaten f{\"u}r diese Experimente etabliert. Halbleiterquantenpunkte weisen große {\"A}hnlichkeiten zu einzelnen Atomen auf, die sich durch diskrete Energieniveaus und diskrete Spektrallinien im Emissionsspektrum manifestieren, und zeichnen sich {\"u}berdies als exzellente Emitter f{\"u}r einzelne und ununterscheidbare Photonen aus. Außerdem k{\"o}nnen mit Quantenpunkten zwei kritische Bausteine in der Quanteninformationstechnologie abgedeckt werden. So k{\"o}nnen station{\"a}re Quantenbits (Qubits) in Form von Elektronenspinzust{\"a}nden gespeichert werden und mittels Spin-Photon-Verschr{\"a}nkung weit entfernte station{\"a}re Qubits {\"u}ber fliegende photonische Qubits verschr{\"a}nkt werden. Die Herstellung und Charakterisierung von quantenpunktbasierten Halbleiterproben, die sich durch definierte Eigenschaften f{\"u}r Experimente in der QIP auszeichnen, steht im Mittelpunkt der vorliegenden Arbeit. Die Basis f{\"u}r das Probenwachstum bildet dabei das Materialsystem von selbstorganisierten In(Ga)As-Quantenpunkten auf GaAs-Substraten. Die Herstellung der Quantenpunktproben mittels Molekularstrahlepitaxie erm{\"o}glicht h{\"o}chste kristalline Qualit{\"a}ten und bietet die M{\"o}glichkeit, die Quantenemitter in photonische Resonatoren zu integrieren. Dadurch kann die Lichtauskoppeleffizienz stark erh{\"o}ht und die Emission durch Effekte der Licht-Materie-Wechselwirkung verst{\"a}rkt werden. Vor diesem Hintergrund wurden in der vorliegenden Arbeit verschiedene In(Ga)As-Quantenpunktproben mit definierten Anforderungen mittels Molekularstrahlepitaxie hergestellt und deren morphologische und optische Eigenschaften untersucht. F{\"u}r die Charakterisierung der Morphologie kamen Rasterelektronen- und Rasterkraftmikroskopie zum Einsatz. Die optischen Eigenschaften wurden mit Hilfe der Reflektions-, Photolumineszenz- und Resonanzfluoreszenz-Spektroskopie sowie Autokorrelationsmessungen zweiter Ordnung ermittelt. Der Experimentalteil der Arbeit ist in drei Kapitel unterteilt, deren Kerninhalte im Folgenden kurz wiedergegeben werden. Quasi-Planare Einzelphotonenquelle mit hoher Extraktionseffizienz: Planare quantenpunktbasierte Einzelphotonenquellen mit hoher Extraktionseffizienz sind f{\"u}r Experimente zur Spinmanipulation von herausragender Bedeutung. Elektronen- und Lochspins haben sich als gute Kandidaten erwiesen, um gezielt einzelne Elektronenspins zu initialisieren, manipulieren und zu messen. Ein einzelner Quantenpunkt muss einfach geladen sein, damit er im Voigt-Magnetfeld ein λ-System bilden kann, welches die grundlegende Konfiguration f{\"u}r Experimente dieser Art darstellt. Wichtig sind hier einerseits eine stabile Spinkonfiguration mit langer Koh{\"a}renzzeit und andererseits hohe Lichtauskoppeleffizienzen. Quantenpunkte in planaren Mikrokavit{\"a}ten weisen gr{\"o}ßere Werte f{\"u}r die Spindephasierungszeit auf als Mikro- und Nanot{\"u}rmchenresonatoren, dagegen ist bei planaren Proben die Lichtauskoppeleffizienz geringer. In diesem Kapitel wird eine quasi-planare quantenpunktbasierte Quelle f{\"u}r einzelne (g(2)(0)=0,023) und ununterscheidbare Photonen (g(2)indist (0)=0,17) mit hoher Reinheit vorgestellt. Die Quantenpunktemission weist eine sehr hohe Intensit{\"a}t und optische Qualit{\"a}t mit Halbwertsbreiten nahe der nat{\"u}rlichen Linienbreite auf. Die Auskoppeleffizienz wurde zu 42\% f{\"u}r reine Einzelphotonenemission bestimmt und {\"u}bersteigt damit die, f{\"u}r eine planare Resonatorstruktur erwartete, Extraktionseffizienz (33\%) deutlich. Als Grund hierf{\"u}r konnte die Kopplung der Photonenemission an Gallium-induzierte, Gauß-artige Defektstrukturen ausgemacht werden. Mithilfe morphologischer Untersuchungen und Simulationen wurde gezeigt, dass diese Defektkavit{\"a}ten einerseits als Nukleationszentren f{\"u}r das Quantenpunktwachstum dienen und andererseits die Extraktion des emittierten Lichts der darunterliegenden Quantenpunkte durch Lichtb{\"u}ndelung verbessern. In weiterf{\"u}hrenden Arbeiten konnte an dieser spezifischen Probe der fundamentale Effekt der Verschr{\"a}nkung von Elektronenspin und Photon nachgewiesen werden, der einen kritischen Baustein f{\"u}r halbleiterbasierte Quantenrepeater darstellt. Im Rahmen dieses Experiments war es m{\"o}glich, die komplette Tomographie eines verschr{\"a}nkten Spin-Photon-Paares an einer halbleiterbasierten Spin-Photon Schnittstelle zu messen. {\"U}berdies konnte Zweiphotoneninterferenz und Ununterscheidbarkeit von Photonen aus zwei r{\"a}umlich getrennten Quantenpunkten auf diesem Wafer gemessen werden, was ebenfalls einen kritischen Baustein f{\"u}r Quantenrepeater darstellt. Gekoppeltes Quantenfilm-Quantenpunkt System: Weitere Herausforderungen f{\"u}r optisch kontrollierte halbleiterbasierte Spin-Qubit-Systeme sind das schnelle und zerst{\"o}rungsfreie Auslesen der Spin-Information sowie die Implementierung eines skalierbaren Ein-Qubit- und Zwei-Qubit-Gatters. Ein k{\"u}rzlich ver{\"o}ffentlichtes theoretisches Konzept k{\"o}nnte hierzu einen eleganten Weg er{\"o}ffnen: Hierbei wird die spinabh{\"a}ngige Austauschwechselwirkung zwischen einem Elektron-Spin in einem Quantenpunkt und einem Exziton-Polariton-Gas, welches in einem nahegelegenen Quantenfilm eingebettet ist, ausgen{\"u}tzt. So k{\"o}nnte die Spin-Information zerst{\"o}rungsfrei ausgelesen werden und eine skalierbare Wechselwirkung zwischen zwei Qubits {\"u}ber gr{\"o}ßere Distanzen erm{\"o}glicht werden, da sich die Wellenfunktion von Exziton-Polaritonen, abh{\"a}ngig von der G{\"u}te des Mikroresonators, {\"u}ber mehrere μm ausdehnen kann. Dies und weitere m{\"o}gliche Anwendungen machen das gekoppelte Quantenfilm-Quantenpunkt System sehr interessant, weshalb eine grundlegende experimentelle Untersuchung dieses Systems w{\"u}nschenswert ist. In Zusammenarbeit mit der Arbeitsgruppe um Yoshihisa Yamamoto an der Universit{\"a}t Stanford, wurde hierzu ein konkretes Probendesign entwickelt und im Rahmen dieser Arbeit technologisch verwirklicht. Durch systematische epitaktische Optimierung ist es gelungen, ein gekoppeltes Quantenfilm-Quantenpunkt System erfolgreich in einen Mikroresonator zu implementierten. Das Exziton-Polariton-Gas konnte mittels eines Quantenfilms in starker Kopplung in einer Mikrokavit{\"a}t mit einer Rabi-Aufspaltung von VR=2,5 meV verwirklicht werden. Zudem konnten einfach geladene Quantenpunkte mit hoher optischer Qualit{\"a}t und klarem Einzelphotonencharakter (g(2)(0)=0,24) in unmittelbarer N{\"a}he zum Quantenfilm gemessen werden. Positionierte Quantenpunkte: F{\"u}r die Herstellung quantenpunktbasierter Einzelphotonenquellen mit hoher optischer Qualit{\"a}t ist eine skalierbare technologische Produktionsplattform w{\"u}nschenswert. Dazu m{\"u}ssen einzelne Quantenpunkte positionierbar und somit deterministisch und skalierbar in Bauteile integriert werden k{\"o}nnen. Basierend auf zweidimensionalen, regelm{\"a}ßig angeordneten und dadurch adressierbaren Quantenpunkten gibt es zudem ein Konzept, um ein skalierbares, optisch kontrolliertes Zwei-Qubit-Gatter zu realisieren. Das hier verfolgte Prinzip f{\"u}r die Positionierung von Quantenpunkten beruht auf der Verwendung von vorstrukturierten Substraten mit ge{\"a}tzten Nanol{\"o}chern, welche als Nukleationszentren f{\"u}r das Quantenpunktwachstum dienen. Durch eine optimierte Schichtstruktur und eine erh{\"o}hte Lichtauskopplung unter Verwendung eines dielektrischen Spiegels konnte erstmals Resonanzfluoreszenz an einem positionierten Quantenpunkt gemessen werden. In einem weiteren Optimierungsansatz konnte außerdem Emission von positionierten InGaAs Quantenpunkten auf GaAs Substrat bei 1,3 μm Telekommunikationswellenl{\"a}nge erreicht werden.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Maass2017, author = {Maaß, Henriette}, title = {Spin-dependence of angle-resolved photoemission from spin-orbit split surface states}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151025}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Spin- and angle-resolved photoelectron spectroscopy is the prime method to investigate spin polarized electronic states at solid state surfaces. In how far the spin polarization of an emitted photoelectron reflects the intrinsic spin character of an electronic state is the main question in the work at hand. It turns out that the measured spin polarization is strongly influenced by experimental conditions, namely by the polarization of the incoming radiation and the excitation energy. The photoemission process thus plays a non-negligible role in a spin-sensitive measurement. This work is dedicated to unravel the relation between the result of a spin-resolved measurement and the spin character in the ground state and, therefore, to gain a deep understanding of the spin-dependent photoemission process. Materials that exhibit significant spin-splittings in their electronic structure, owing to a strong spin-orbit coupling, serve as model systems for the investigations in this work. Therefore, systems with large Rashba-type spin-splittings as BiTeI(0001) and the surface alloys BiAg2/Ag(111) and PbAg2/Ag(111) are investigated. Likewise, the surface electronic structure of the topological insulators Bi2Te2Se(0001) and Bi2Te3(0001) are analyzed. Light polarization dependent photoemission experiments serve as a probe of the orbital composition of electronic states. The knowledge of the orbital structure helps to disentangle the spin-orbital texture inherent to the different surface states, when in addition the spin-polarization is probed. It turns out that the topological surface state of Bi2Te2Se(0001) as well as the Rashba-type surface state of BiTeI(0001) exhibit chiral spin-textures associated with the p-like in-plane orbitals. In particular, opposite chiralities are coupled to either tangentially or radially aligned p-like orbitals, respectively. The results presented here are thus evidence that a coupling between spin- and orbital part of the wave function occurs under the influence of spin-orbit coupling, independent of the materials topology. Systematic photon energy dependent measurements of the out-of-plane spin polarization of the topological surface state of Bi2Te3(0001) reveal a strong dependence and even a reversal of the sign of the photoelectron spin polarization with photon energy. Similarly, the measured spin component perpendicular to the wave vector of the surface state of BiAg2/Ag(111) shows strong modulations and sign reversals when the photon energy is changed. In BiAg2/Ag(111) the variations in the photoelectron spin polarization are accompanied by significant changes and even a complete suppression of the photoemission intensity from the surface state, indicating that the variations of the spin polarization are strongly related to the photoemission cross section. This relation is finally analyzed in detail by employing a simple model, which is based on an evaluation of the transition matrix elements that describe the presented experiments. The model shows that the underlying cause for the observed photoelectron spin reversals can be found in the coupling of the spin structure to the spatial part of the initial state wave function, revealing the crucial role of spin-orbit interaction in the initial state wave function. The model is supported by ab initio photoemission calculations, which show strong agreement with the experimental results.}, subject = {Photoelektronenspektroskopie}, language = {en} }