@article{MambrettiKistnerMayeretal.2016, author = {Mambretti, Egle M. and Kistner, Katrin and Mayer, Stefanie and Massotte, Dominique and Kieffer, Brigitte L. and Hoffmann, Carsten and Reeh, Peter W. and Brack, Alexander and Asan, Esther and Rittner, Heike L.}, title = {Functional and structural characterization of axonal opioid receptors as targets for analgesia}, series = {Molecular Pain}, journal = {Molecular Pain}, number = {12}, doi = {10.1177/1744806916628734}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145917}, pages = {1-17}, year = {2016}, abstract = {Background Opioids are the gold standard for the treatment of acute pain despite serious side effects in the central and enteric nervous system. µ-opioid receptors (MOPs) are expressed and functional at the terminals of sensory axons, when activated by exogenous or endogenous ligands. However, the presence and function of MOP along nociceptive axons remains controversial particularly in na{\"i}ve animals. Here, we characterized axonal MOPs by immunofluorescence, ultrastructural, and functional analyses. Furthermore, we evaluated hypertonic saline as a possible enhancer of opioid receptor function. Results Comparative immunolabeling showed that, among several tested antibodies, which all provided specific MOP detection in the rat central nervous system (CNS), only one monoclonal MOP-antibody yielded specificity and reproducibility for MOP detection in the rat peripheral nervous system including the sciatic nerve. Double immunolabeling documented that MOP immunoreactivity was confined to calcitonin gene-related peptide (CGRP) positive fibers and fiber bundles. Almost identical labeling and double labeling patterns were found using mcherry-immunolabeling on sciatic nerves of mice producing a MOP-mcherry fusion protein (MOP-mcherry knock-in mice). Preembedding immunogold electron microscopy on MOP-mcherry knock-in sciatic nerves indicated presence of MOP in cytoplasm and at membranes of unmyelinated axons. Application of [D-Ala\(^2\), N-MePhe\(^4\), Gly-ol]-enkephalin (DAMGO) or fentanyl dose-dependently inhibited depolarization-induced CGRP release from rat sciatic nerve axons ex vivo, which was blocked by naloxone. When the lipophilic opioid fentanyl was applied perisciatically in na{\"i}ve Wistar rats, mechanical nociceptive thresholds increased. Subthreshold doses of fentanyl or the hydrophilic opioid DAMGO were only effective if injected together with hypertonic saline. In vitro, using β-arrestin-2/MOP double-transfected human embryonic kidney cells, DAMGO as well as fentanyl lead to a recruitment of β-arrestin-2 to the membrane followed by a β-arrestin-2 reappearance in the cytosol and MOP internalization. Pretreatment with hypertonic saline prevented MOP internalization. Conclusion MOPs are present and functional in the axonal membrane from na{\"i}ve animals. Hypertonic saline acutely decreases ligand-induced internalization of MOP and thereby might improve MOP function. Further studies should explore potential clinical applications of opioids together with enhancers for regional analgesia.}, language = {en} } @phdthesis{Valchanova2006, author = {Valchanova, Stamatova Ralitsa}, title = {Functional analysis of the murine cytomegalovirus genes m142 and m143}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20215}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Human cytomegalovirus (HCMV) infection causes clinical symptoms in immunocompromised individuals such as transplantant recipients and AIDS patients. The virus is also responsible for severe complications in unborn children and young infants. The species specificity of HCMV prevents the direct study of mechanisms controlling the infection in animal models. Instead, the murine cytomegalovirus (MCMV) is used as a model system. Human and murine CMVs have large double-stranded DNA genomes, encoding nearly 170 genes. About 30\% of the genes are committed to essential tasks of the virus. The remaining genes are involved in virus pathogenesis or host interaction and are dispensable for virus replication. The CMV genes are classified in gene families, based on sequence homology. In the present work, the function of two genes of the US22 gene family was analyzed. The MCMV genes m142 and m143 are the only members of this family that are essential for virus replication. These genes also differ from the remaining ten US22 gene family members in that they lack 1 of 4 conserved sequence motifs that are characteristic of this family. The same conserved motif is missing in the HCMV US22 family members TRS1 and IRS1, suggesting a possible functional homology. To demonstrate an essential role of m142 and m143, the genes were deleted from the MCMV genome, and the mutants were reconstituted on complementing cells. Infection of non-complementing cells with the deletion mutants did not result in virus replication. Virus growth was rescued by reinsertion of the corresponding genes. Cells infected with the viral deletion mutants synthesized reduced amounts of viral DNA, and viral late genes were not expressed. However, RNA analyses showed that late transcripts were present, excluding a role of m142 and m143 in regulation of gene transcription. Metabolic labelling experiments showed that total protein synthesis at late times postinfection was impaired in cells infected with deletion mutants. Moreover, the dsRNA-dependent protein kinase R (PKR) and its target protein, the translation initiation factor 2\&\#945; (eIF2\&\#945;) were phosphorylated in these cells. This suggested that the m142 and m143 are required for blocking the PKR-mediated shut-down of protein synthesis. Expression of the HCMV gene TRS1, a known inhibitor of PKR activation, rescued the replication of the deletion mutants, supporting the observation that m142 and m143 are required to inhibit this innate immune response of the host cell.}, subject = {Maus}, language = {en} } @article{BotheHaenzelmannBoehleretal.2022, author = {Bothe, Sebastian and H{\"a}nzelmann, Petra and B{\"o}hler, Stephan and Kehrein, Josef and Zehe, Markus and Wiedemann, Christoph and Hellmich, Ute A. and Brenk, Ruth and Schindelin, Hermann and Sotriffer, Christoph}, title = {Fragment screening using biolayer interferometry reveals ligands targeting the SHP-motif binding site of the AAA+ ATPase p97}, series = {Communications Chemistry}, volume = {5}, journal = {Communications Chemistry}, number = {1}, doi = {10.1038/s42004-022-00782-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300821}, year = {2022}, abstract = {Biosensor techniques have become increasingly important for fragment-based drug discovery during the last years. The AAA+ ATPase p97 is an essential protein with key roles in protein homeostasis and a possible target for cancer chemotherapy. Currently available p97 inhibitors address its ATPase activity and globally impair p97-mediated processes. In contrast, inhibition of cofactor binding to the N-domain by a protein-protein-interaction inhibitor would enable the selective targeting of specific p97 functions. Here, we describe a biolayer interferometry-based fragment screen targeting the N-domain of p97 and demonstrate that a region known as SHP-motif binding site can be targeted with small molecules. Guided by molecular dynamics simulations, the binding sites of selected screening hits were postulated and experimentally validated using protein- and ligand-based NMR techniques, as well as X-ray crystallography, ultimately resulting in the first structure of a small molecule in complex with the N-domain of p97. The identified fragments provide insights into how this region could be targeted and present first chemical starting points for the development of a protein-protein interaction inhibitor preventing the binding of selected cofactors to p97.}, language = {en} } @article{PiselliBenz2021, author = {Piselli, Claudio and Benz, Roland}, title = {Fosmidomycin transport through the phosphate-specific porins OprO and OprP of Pseudomonas aeruginosa}, series = {Molecular Microbiology}, volume = {116}, journal = {Molecular Microbiology}, number = {1}, doi = {10.1111/mmi.14693}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238905}, pages = {97 -- 108}, year = {2021}, abstract = {The Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen, responsible for many hospital-acquired infections. The bacterium is quite resistant toward many antibiotics, in particular because of the fine-tuned permeability of its outer membrane (OM). General diffusion outer membrane pores are quite rare in this organism. Instead, its OM contains many substrate-specific porins. Their expression is varying according to growth conditions and virulence. Phosphate limitations, as well as pathogenicity factors, result in the induction of the two mono- and polyphosphate-specific porins, OprP and OprO, respectively, together with an inner membrane uptake mechanism and a periplasmic binding protein. These outer membrane channels could serve as outer membrane pathways for the uptake of phosphonates. Among them are not only herbicides, but also potent antibiotics, such as fosfomycin and fosmidomycin. In this study, we investigated the interaction between OprP and OprO and fosmidomycin in detail. We could demonstrate that fosmidomycin is able to bind to the phosphate-specific binding site inside the two porins. The inhibition of chloride conductance of OprP and OprO by fosmidomycin is considerably less than that of phosphate or diphosphate, but it can be measured in titration experiments of chloride conductance and also in single-channel experiments. The results suggest that fosmidomycin transport across the OM of P. aeruginosa occurs through OprP and OprO. Our data with the ones already known in the literature show that phosphonic acid-containing antibiotics are in general good candidates to treat the infections of P. aeruginosa at the very beginning through a favorable OM transport system.}, language = {en} } @article{MielichSuessWagnerMietrachetal.2017, author = {Mielich-S{\"u}ss, Benjamin and Wagner, Rabea M. and Mietrach, Nicole and Hertlein, Tobias and Marincola, Gabriella and Ohlsen, Knut and Geibel, Sebastian and Lopez, Daniel}, title = {Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus}, series = {PLoS Pathogens}, volume = {13}, journal = {PLoS Pathogens}, number = {11}, doi = {10.1371/journal.ppat.1006728}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170035}, pages = {e1006728}, year = {2017}, abstract = {Scaffold proteins are ubiquitous chaperones that promote efficient interactions between partners of multi-enzymatic protein complexes; although they are well studied in eukaryotes, their role in prokaryotic systems is poorly understood. Bacterial membranes have functional membrane microdomains (FMM), a structure homologous to eukaryotic lipid rafts. Similar to their eukaryotic counterparts, bacterial FMM harbor a scaffold protein termed flotillin that is thought to promote interactions between proteins spatially confined to the FMM. Here we used biochemical approaches to define the scaffold activity of the flotillin homolog FloA of the human pathogen Staphylococcus aureus, using assembly of interacting protein partners of the type VII secretion system (T7SS) as a case study. Staphylococcus aureus cells that lacked FloA showed reduced T7SS function, and thus reduced secretion of T7SS-related effectors, probably due to the supporting scaffold activity of flotillin. We found that the presence of flotillin mediates intermolecular interactions of T7SS proteins. We tested several small molecules that interfere with flotillin scaffold activity, which perturbed T7SS activity in vitro and in vivo. Our results suggest that flotillin assists in the assembly of S. aureus membrane components that participate in infection and influences the infective potential of this pathogen.}, language = {en} } @article{ReuterJaeckelsKneitzetal.2019, author = {Reuter, Isabel and J{\"a}ckels, Jana and Kneitz, Susanne and Kuper, Jochen and Lesch, Klaus-Peter and Lillesaar, Christina}, title = {Fgf3 is crucial for the generation of monoaminergic cerebrospinal fluid contacting cells in zebrafish}, series = {Biology Open}, volume = {8}, journal = {Biology Open}, doi = {10.1242/bio.040683}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200749}, pages = {bio040683}, year = {2019}, abstract = {In most vertebrates, including zebrafish, the hypothalamic serotonergic cerebrospinal fluid-contacting (CSF-c) cells constitute a prominent population. In contrast to the hindbrain serotonergic neurons, little is known about the development and function of these cells. Here, we identify fibroblast growth factor (Fgf)3 as the main Fgf ligand controlling the ontogeny of serotonergic CSF-c cells. We show that fgf3 positively regulates the number of serotonergic CSF-c cells, as well as a subset of dopaminergic and neuroendocrine cells in the posterior hypothalamus via control of proliferation and cell survival. Further, expression of the ETS-domain transcription factor etv5b is downregulated after fgf3 impairment. Previous findings identified etv5b as critical for the proliferation of serotonergic progenitors in the hypothalamus, and therefore we now suggest that Fgf3 acts via etv5b during early development to ultimately control the number of mature serotonergic CSF-c cells. Moreover, our analysis of the developing hypothalamic transcriptome shows that the expression of fgf3 is upregulated upon fgf3 loss-of-function, suggesting activation of a self-compensatory mechanism. Together, these results highlight Fgf3 in a novel context as part of a signalling pathway of critical importance for hypothalamic development.}, language = {en} } @phdthesis{Balakrishnan2021, author = {Balakrishnan, Ashwin}, title = {Fast molecular mobility of β\(_2\)-adrenergic receptor revealed by time-resolved fluorescence spectroscopy}, doi = {10.25972/OPUS-25085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250856}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {G-protein- coupled receptors (GPCRs) are the largest family of membrane confined receptors and they transduce ligand binding to downstream effects. Almost 40\% of the drugs in the world target GPCRs due to their function, albeit knowing less about their activation. Understanding their dynamic behaviour in basal and activated state could prove key to drug development in the future. GPCRs are known to exhibit complex molecular mobility patterns. A plethora of studies have been and are being conducted to understand the mobility of GPCRs. Due to limitations of imaging and spectroscopic techniques commonly used, the relevant timescales are hard to access. The most commonly used techniques are electron paramagnetic resonance or double electronelectron resonance, nuclear magnetic resonance, time-resolved fluorescence, single particle tracking and fluorescence recovery after photobleaching. Among these techniques only fluorescence has the potential to probe live cells. In this thesis, I use different time-resolved fluorescence spectroscopic techniques to quantify diffusion dynamics / molecular mobility of β2-adrenergic receptor (β2-AR) in live cells. The thesis shows that β2-AR exhibits mobility over an exceptionally broad temporal range (nanosecond to second) that can be linked to its respective physiological scenario. I explain how β2-AR possesses surprisingly fast lateral mobility (~10 μm²/s) associated with vesicular transport in contrast to the prior reports of it originating from fluorophore photophysics and free fluorophores in the cytosol. In addition, β2-AR has rotational mobility (~100 μs) that makes it conform to the Saffman-Delbr{\"u}ck model of membrane diffusion unlike earlier studies. These contrasts are due to the limitations of the methodologies used. The limitations are overcome in this thesis by using different time-resolved fluorescence techniques of fluorescence correlation spectroscopy (FCS), time-resolved anisotropy (TRA) and polarisation resolved fullFCS (fullFCS). FCS is limited to microsecond to the second range and TRA is limited to the nanosecond range. fullFCS complements the two techniques by covering the blind spot of FCS and TRA in the microsecond range. Finally, I show how ligand stimulation causes a decrease in lateral mobility which could be a hint at cluster formation due to internalisation and how β2-AR possesses a basal oligomerisation that does not change on activation. Thus, through this thesis, I show how different complementary fluorescence techniques are necessary to overcome limitations of each technique and to thereby elucidate functional dynamics of GPCR activation and how it orchestrates downstream signalling.}, language = {en} } @article{RohlederHuangXueetal.2016, author = {Rohleder, Florian and Huang, Jing and Xue, Yutong and Kuper, Jochen and Round, Adam and Seidman, Michael and Wang, Weidong and Kisker, Caroline}, title = {FANCM interacts with PCNA to promote replication traverse of DNA interstrand crosslinks}, series = {Nucleic Acids Research}, volume = {44}, journal = {Nucleic Acids Research}, number = {7}, doi = {10.1093/nar/gkw037}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175401}, pages = {3219-3232}, year = {2016}, abstract = {FANCM is a highly conserved DNA remodeling enzyme that promotes the activation of the Fanconi anemia DNA repair pathway and facilitates replication traverse of DNA interstrand crosslinks. However, how FANCM interacts with the replication machinery to promote traverse remains unclear. Here, we show that FANCM and its archaeal homolog Hef from Thermoplasma acidophilum interact with proliferating cell nuclear antigen (PCNA), an essential co-factor for DNA polymerases in both replication and repair. The interaction is mediated through a conserved PIP-box; and in human FANCM, it is strongly stimulated by replication stress. A FANCM variant carrying a mutation in the PIP-box is defective in promoting replication traverse of interstrand crosslinks and is also inefficient in promoting FANCD2 monoubiquitination, a key step of the Fanconi anemia pathway. Our data reveal a conserved interaction mode between FANCM and PCNA during replication stress, and suggest that this interaction is essential for FANCM to aid replication machines to traverse DNA interstrand crosslinks prior to post-replication repair.}, language = {en} } @article{WippelFoertschHuppetal.2011, author = {Wippel, Carolin and F{\"o}rtsch, Christina and Hupp, Sabrina and Maier, Elke and Benz, Roland and Ma, Jiangtao and Mitchell, Timothy J and Iliev, Asparouh I}, title = {Extracellular Calcium Reduction Strongly Increases the Lytic Capacity of Pneumolysin From Streptococcus Pneumoniae in Brain Tissue}, series = {The Journal of Infectious Diseases}, volume = {204}, journal = {The Journal of Infectious Diseases}, number = {6}, doi = {10.1093/infdis/jir434}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139356}, pages = {930-936}, year = {2011}, abstract = {Background Streptococcus pneumoniae causes serious diseases such as pneumonia and meningitis. Its major pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, which produces lytic pores at high concentrations. At low concentrations, it has other effects, including induction of apoptosis. Many cellular effects of pneumolysin appear to be calcium dependent. Methods  Live imaging of primary mouse astroglia exposed to sublytic amounts of pneumolysin at various concentrations of extracellular calcium was used to measure changes in cellular permeability (as judged by lactate dehydrogenase release and propidium iodide chromatin staining). Individual pore properties were analyzed by conductance across artificial lipid bilayer. Tissue toxicity was studied in continuously oxygenated acute brain slices. Results  The reduction of extracellular calcium increased the lytic capacity of the toxin due to increased membrane binding. Reduction of calcium did not influence the conductance properties of individual toxin pores. In acute cortical brain slices, the reduction of extracellular calcium from 2 to 1 mM conferred lytic activity to pathophysiologically relevant nonlytic concentrations of pneumolysin. Conclusions  Reduction of extracellular calcium strongly enhanced the lytic capacity of pneumolysin due to increased membrane binding. Thus, extracellular calcium concentration should be considered as a factor of primary importance for the course of pneumococcal meningitis. "}, language = {en} } @phdthesis{Aigner2023, author = {Aigner, Max}, title = {Establishing successful protocols and imaging pipelines for Expansion Microscopy in murine blood platelets}, doi = {10.25972/OPUS-30900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-309003}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Platelets play an important role in the body, since they are part of the hemostasis system, preventing and stopping blood loss. Nevertheless, when platelet or coagulation system function are impaired, uncontrolled bleedings but also irreversible vessel occlusion followed by ischemic tissue damage can occur. Therefore, understanding platelet function and activation, mechanisms which are controlled by a variety of platelet membrane receptors and other factors is important to advance out knowledge of hemostasis and platelet malfunction. For a complete picture of platelet function and their modulating behavior it is desired to be able to quantify receptor distributions and interactions of these densely packed molecular ensembles in the membrane. This challenges scientists for several reasons. Most importantly, platelets are microscopically small objects, challenging the spatial resolution of conventional light microscopy. Moreover, platelet receptors are highly abundant on the membrane so even super-resolution microscopy struggles with quantitative receptor imaging on platelets. With Expansion microscopy (ExM), a new super-resolution technique was introduced, allowing resolutions to achieve super-resolution without using a super-resolution microscope, but by combining a conventional confocal microscopy with a highly processed sample that has been expanded physically. In this doctoral thesis, I evaluated the potential of this technique for super-resolution platelet imaging by optimizing the sample preparation process and establishing an imaging and image processing pipeline for dual-color 3D images of different membrane receptors. The analysis of receptor colocalization using ExM demonstrated a clear superiority compared to conventional microscopy. Furthermore, I identified a library of fluorescently labeled antibodies against different platelet receptors compatible with ExM and showed the possibility of staining membrane receptors and parts of the cytoskeleton at the same time.}, subject = {Mikroskopie}, language = {en} } @article{SchanbacherBieberReindersetal.2022, author = {Schanbacher, Constanze and Bieber, Michael and Reinders, Yvonne and Cherpokova, Deya and Teichert, Christina and Nieswandt, Bernhard and Sickmann, Albert and Kleinschnitz, Christoph and Langhauser, Friederike and Lorenz, Kristina}, title = {ERK1/2 activity is critical for the outcome of ischemic stroke}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms23020706}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283991}, year = {2022}, abstract = {Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2\(^{wt}\)) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood-brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIP\(^{wt}\)) and its phosphorylation-deficient mutant RKIP\(^{S153A}\), known inhibitors of the ERK1/2 signaling cascade. RKIP\(^{wt}\) and RKIP\(^{S153A}\) attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.}, language = {en} } @phdthesis{GeisenhofgebTrinkwalder2019, author = {Geisenhof [geb. Trinkwalder], Michaela}, title = {Erforschung des Schicksals des Mittelk{\"o}rpers anhand der ZF1-Methode}, doi = {10.25972/OPUS-18219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-182199}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Bei der Teilung einer Zelle werden das Genom und die Zellbestandteile zwischen zwei Tochterzellen aufgeteilt. Dies erfordert verschiedene fein aufeinander abgestimmte Vorg{\"a}nge. Unter anderem ist eine proteinreiche Struktur beteiligt, die 1891 entdeckt wurde: der Mittelk{\"o}rper. In vorliegender Arbeit wurden gezielt gekennzeichnete Mittelk{\"o}rperproteine analysiert und verschiedene Phasen des Transports unterschieden. Es erfolgten erstmals Messungen unter Nutzung der ZF1-Methode. Zudem wird anhand der ZF1-Technik nachgewiesen, dass im Rahmen der Zellteilung die Trennung der interzellul{\"a}ren Br{\"u}cke zu beiden Seiten des Mittelk{\"o}rpers stattfindet, woraufhin dieser nach extrazellul{\"a}r abgegeben wird und {\"u}ber einen der Phagozytose {\"a}hnlichen und von Aktin abh{\"a}ngigen Mechanismus von einer Tochterzelle oder unverwandten Nachbarzelle aufgenommen wird.}, subject = {Mitose}, language = {de} } @article{ChubanovFerioliWisnowskyetal.2016, author = {Chubanov, Vladimir and Ferioli, Silvia and Wisnowsky, Annika and Simmons, David G. and Leitzinger, Christin and Einer, Claudia and Jonas, Wenke and Shymkiv, Yuriy and Gudermann, Thomas and Bartsch, Harald and Braun, Attila and Akdogan, Banu and Mittermeier, Lorenz and Sytik, Ludmila and Torben, Friedrich and Jurinovic, Vindi and van der Vorst, Emiel P. C. and Weber, Christian and Yildirim, {\"O}nder A. and Sotlar, Karl and Sch{\"u}rmann, Annette and Zierler, Susanna and Zischka, Hans and Ryazanov, Alexey G.}, title = {Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival}, series = {eLife}, volume = {5}, journal = {eLife}, doi = {10.7554/eLife.20914}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164987}, pages = {e19686}, year = {2016}, abstract = {Mg2+ regulates many physiological processes and signalling pathways. However, little is known about the mechanisms underlying the organismal balance of Mg2+. Capitalizing on a set of newly generated mouse models, we provide an integrated mechanistic model of the regulation of organismal Mg2+ balance during prenatal development and in adult mice by the ion channel TRPM6. We show that TRPM6 activity in the placenta and yolk sac is essential for embryonic development. In adult mice, TRPM6 is required in the intestine to maintain organismal Mg2+ balance, but is dispensable in the kidney. Trpm6 inactivation in adult mice leads to a shortened lifespan, growth deficit and metabolic alterations indicative of impaired energy balance. Dietary Mg2+ supplementation not only rescues all phenotypes displayed by Trpm6-deficient adult mice, but also may extend the lifespan of wildtype mice. Hence, maintenance of organismal Mg2+ balance by TRPM6 is crucial for prenatal development and survival to adulthood.}, language = {en} } @article{PonnuswamySchroettleOstermeieretal.2012, author = {Ponnuswamy, Padmapriya and Schr{\"o}ttle, Angelika and Ostermeier, Eva and Gr{\"u}ner, Sabine and Huang, Paul L. and Ertl, Georg and Hoffmann, Ulrich and Nieswandt, Bernhard and Kuhlencordt, Peter J.}, title = {eNOS Protects from Atherosclerosis Despite Relevant Superoxide Production by the Enzyme in apoE\(^{-/-}\) Mice}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0030193}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134866}, pages = {e30193}, year = {2012}, abstract = {Background: All three nitric oxide synthase (NOS) isoforms are expressed in atherosclerotic plaques. NOS enzymes in general catalyse NO production. However, under conditions of substrate and cofactor deficiency, the enzyme directly catalyse superoxide formation. Considering this alternative chemistry, the effects of NOS on key events in spontaneous hyperlipidemia driven atherosclerosis have not been investigated yet. Here, we evaluate how endothelial nitric oxide synthase (eNOS) modulates leukocyte/endothelial-(L/E) and platelet/endothelial-(P/E) interactions in atherosclerosis and the production of nitric oxide (NO) and superoxide by the enzyme. Principal Findings: Intravital microscopy (IVM) of carotid arteries revealed significantly increased L/E-interactions in apolipoproteinE/eNOS double knockout mice (apoE\(^{-/-}\)/eNOS\(^{-/-}\)), while P/E-interactions did not differ, compared to apoE\(^{-/-}\). eNOS deficiency increased macrophage infiltration in carotid arteries and vascular cell adhesion molecule-1 (VCAM-1) expression, both in endothelial and smooth muscle cells. Despite the expression of other NOS isoforms (inducible NOS, iNOS and neuronal NOS, nNOS) in plaques, Electron Spin Resonance (ESR) measurements of NO showed significant contribution of eNOS to total circulating and vascular wall NO production. Pharmacological inhibition and genetic deletion of eNOS reduced vascular superoxide production, indicating uncoupling of the enzyme in apoE\(^{-/-}\) vessels. Conclusion: Overt plaque formation, increased vascular inflammation and L/E-interactions are associated with significant reduction of superoxide production in apoE\(^{-/-}\)/eNOS\(^{-/-}\) vessels. Therefore, lack of eNOS does not cause an automatic increase in oxidative stress. Uncoupling of eNOS occurs in apoE\(^{-/-}\) atherosclerosis but does not negate the enzyme's strong protective effects.}, language = {en} } @phdthesis{MonyNair2021, author = {Mony Nair, Rahul}, title = {Elucidating ubiquitin recognition by the HECT-type ubiquitin ligase HUWE1}, doi = {10.25972/OPUS-22103}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221030}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The small protein modifier ubiquitin is at the heart of an immensely versatile posttranslational modification system that orchestrates countless physiological and disease-associated cellular processes. Key to this versatility are the manifold modifications that can be assembled from ubiquitin "building blocks" and are associated with specific functional outcomes for the modified substrates. In particular, ubiquitin molecules can form polymeric chains of distinct lengths and linkage types that give rise to distinct chain conformations, thereby providing recognition sites for specific signaling receptors/effectors. The class of E3 enzymes (ubiquitin ligases) provides critical specificity determinants in ubiquitin linkage formation; it is therefore crucial to unravel precisely how E3 enzymes operate in order to understand the structural basis of ubiquitin signaling and exploit these insights for therapeutic benefit. Overexpression and deregulation of the HECT-type ubiquitin ligase HUWE1 is implicated in several different cancer types and neurodegenerative disorders. It is largely unknown which factors control the ubiquitin modifications formed by HUWE1, how the catalytic HECT domain interacts with functionally distinct ubiquitin molecules (donor, acceptor and regulatory ubiquitin molecules) and which conformational transitions enable these interactions during ubiquitin chain formation. One aim of this study was to structurally elucidate the recognition of donor ubiquitin by the HECT domain of HUWE1. To this end I utilized a ubiquitin activity-based probe to reconstitute a proxy for a donor ubiquitin-linked conjugate of the HECT domain of HUWE1 and determined its structure by X-ray crystallography. This structure reveals that the donor ubiquitin binds to the C-lobe of HUWE1 in the same way as NEDD4-type ligases, corroborating the idea that HECT ligases utilize a conserved mode of donor ubiquitin recognition. independent of their linkage and substrate specificities. With the help of biochemical analyses, I also validated specific features of the structure, in particular the positioning of the C-terminal tail of the ligase, which was known to be critical for activity. In the newly determined structure, which reflects an "L-shaped", active state of the HECT domain, this tail is fully resolved and coordinated at the N-lobe-C-lobe interface. I defined residues that are critical for this coordination and showed that they are also essential for the activity of HUWE1, including auto-ubiquitination, free ubiquitin chain formation, and substrate ubiquitination. Furthermore, I discovered that the N-lobe of HUWE1 harbors a ubiquitin-binding exosite similar to NEDD4-type ligases and E6AP. My in-vitro activity and binding assays show that HUWE1 uses the exosite for isopeptide bond formation, but that it is dispensable for thioester bond formation. The binding assays further show that the donor ubiquitin loaded HECT domain binds an additional ubiquitin molecule at the exosite more tightly than the apo HECT domain, which possibly suggests allosteric communication between the two sites. Finally, I showed that the ubiquitin activity-based probe (ubiquitin-propargylamine) can label the catalytic cysteine of HUWE1 and NEDD4-type with close to quantitative turn- over, while it does not react with the HECT domain of the evolutionarily more divergent E6AP. The determinants underlying these differential reactivities remain to be explored. Taken, together my results significantly enhance our mechanistic understanding of the catalytic domain of HUWE1 and pinpoint linchpins for therapeutic interventions with the activity of this disease-relevant enzyme.}, language = {en} } @article{WeiderWegenerSchmittetal.2015, author = {Weider, Matthias and Wegener, Am{\´e}lie and Schmitt, Christian and K{\"u}spert, Melanie and Hillg{\"a}rtner, Simone and B{\"o}sl, Michael R. and Hermans-Borgmeyer, Irm and Nait-Oumesmar, Brahim and Wegner, Michael}, title = {Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells}, series = {PLoS Genetics}, volume = {11}, journal = {PLoS Genetics}, number = {2}, doi = {10.1371/journal.pgen.1005008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144123}, pages = {e1005008}, year = {2015}, abstract = {Oligodendrocytes are the myelinating glia of the central nervous system and ensure rapid saltatory conduction. Shortage or loss of these cells leads to severe malfunctions as observed in human leukodystrophies and multiple sclerosis, and their replenishment by reprogramming or cell conversion strategies is an important research aim. Using a transgenic approach we increased levels of the transcription factor Sox10 throughout the mouse embryo and thereby prompted Fabp7-positive glial cells in dorsal root ganglia of the peripheral nervous system to convert into cells with oligodendrocyte characteristics including myelin gene expression. These rarely studied and poorly characterized satellite glia did not go through a classic oligodendrocyte precursor cell stage. Instead, Sox10 directly induced key elements of the regulatory network of differentiating oligodendrocytes, including Olig2, Olig1, Nkx2.2 and Myrf. An upstream enhancer mediated the direct induction of the Olig2 gene. Unlike Sox10, Olig2 was not capable of generating oligodendrocyte-like cells in dorsal root ganglia. Our findings provide proof-of-concept that Sox10 can convert conducive cells into oligodendrocyte-like cells in vivo and delineates options for future therapeutic strategies.}, language = {en} } @article{GentschevMuellerAdelfingeretal.2011, author = {Gentschev, Ivaylo and M{\"u}ller, Meike and Adelfinger, Marion and Weibel, Stephanie and Grummt, Friedrich and Zimmermann, Martina and Bitzer, Michael and Heisig, Martin and Zhang, Qian and Yu, Yong A. and Chen, Nanhai G. and Stritzker, Jochen and Lauer, Ulrich M. and Szalay, Aladar A.}, title = {Efficient Colonization and Therapy of Human Hepatocellular Carcinoma (HCC) Using the Oncolytic Vaccinia Virus Strain GLV-1h68}, series = {PLOS ONE}, volume = {6}, journal = {PLOS ONE}, number = {7}, doi = {10.1371/journal.pone.0022069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135319}, pages = {e22069}, year = {2011}, abstract = {Virotherapy using oncolytic vaccinia virus strains is one of the most promising new strategies for cancer therapy. In this study, we analyzed for the first time the therapeutic efficacy of the oncolytic vaccinia virus GLV-1h68 in two human hepatocellular carcinoma cell lines HuH7 and PLC/PRF/5 (PLC) in cell culture and in tumor xenograft models. By viral proliferation assays and cell survival tests, we demonstrated that GLV-1h68 efficiently colonized, replicated in, and did lyse these cancer cells in culture. Experiments with HuH7 and PLC xenografts have revealed that a single intravenous injection (i.v.) of mice with GLV-1h68 resulted in a significant reduction of primary tumor sizes compared to uninjected controls. In addition, replication of GLV-1h68 in tumor cells led to strong inflammatory and oncolytic effects resulting in intense infiltration of MHC class II-positive cells like neutrophils, macrophages, B cells and dendritic cells and in up-regulation of 13 pro-inflammatory cytokines. Furthermore, GLV-1h68 infection of PLC tumors inhibited the formation of hemorrhagic structures which occur naturally in PLC tumors. Interestingly, we found a strongly reduced vascular density in infected PLC tumors only, but not in the non-hemorrhagic HuH7 tumor model. These data demonstrate that the GLV-1h68 vaccinia virus may have an enormous potential for treatment of human hepatocellular carcinoma in man.}, language = {en} } @phdthesis{Storim2011, author = {Storim, Julian}, title = {Dynamic mapping of the immunological synapse in T cell homeostasis and activation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70114}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Polarity and migration are essential for T cell activation, homeostasis, recirculation and effector function. To address how T cells coordinate polarization and migration when interacting with dendritic cells (DC) during homeostatic and activating conditions, a low density collagen model was used for confocal live-cell imaging and high-resolution 3D reconstruction of fixed samples. During short-lived (5 to 15 min) and migratory homeostatic interactions, recently activated T cells simultaneously maintained their amoeboid polarization and polarized towards the DC. The resulting fully dynamic and asymmetrical interaction plane comprised all compartments of the migrating T cell: the actin-rich leading edge drove migration but displayed only moderate signaling activity; the mid-zone mediated TCR/MHC induced signals associated with homeostatic proliferation; and the rear uropod mediated predominantly MHC independent signals possibly connected to contact-dependent T cell survival. This "dynamic immunological synapse" with distinct signaling sectors enables moving T cells to serially sample antigen-presenting cells and resident tissue cells and thus to collect information along the way. In contrast to homeostatic contacts, recognition of the cognate antigen led to long-lasting T cell/DC interaction with T cell rounding, disintegration of the uropod, T cell polarization towards the DC, and the formation of a symmetrical contact plane. However, the polarity of the continuously migrating DC remained intact and T cells aggregated within the DC uropod, an interesting cellular compartment potentially involved in T cell activation and regulation of the immune response. Taken together, 3D collagen facilitates high resolution morphological studies of T cell function under realistic, in vivo-like conditions.}, subject = {T-Lymphozyt}, language = {en} } @article{KalledaAmichArslanetal.2016, author = {Kalleda, Natarajaswamy and Amich, Jorge and Arslan, Berkan and Poreddy, Spoorthi and Mattenheimer, Katharina and Mokhtari, Zeinab and Einsele, Hermann and Brock, Matthias and Heinze, Katrin Gertrud and Beilhack, Andreas}, title = {Dynamic Immune Cell Recruitment After Murine Pulmonary Aspergillus fumigatus Infection under Different Immunosuppressive Regimens}, series = {Frontiers in Microbiology}, volume = {7}, journal = {Frontiers in Microbiology}, number = {1107}, doi = {10.3389/fmicb.2016.01107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165368}, year = {2016}, abstract = {Humans are continuously exposed to airborne spores of the saprophytic fungus Aspergillus fumigatus. However, in healthy individuals pulmonary host defense mechanisms efficiently eliminate the fungus. In contrast, A. fumigatus causes devastating infections in immunocompromised patients. Host immune responses against A. fumigatus lung infections in immunocompromised conditions have remained largely elusive. Given the dynamic changes in immune cell subsets within tissues upon immunosuppressive therapy, we dissected the spatiotemporal pulmonary immune response after A. fumigatus infection to reveal basic immunological events that fail to effectively control invasive fungal disease. In different immunocompromised murine models, myeloid, notably neutrophils, and macrophages, but not lymphoid cells were strongly recruited to the lungs upon infection. Other myeloid cells, particularly dendritic cells and monocytes, were only recruited to lungs of corticosteroid treated mice, which developed a strong pulmonary inflammation after infection. Lymphoid cells, particularly CD4\(^+\) or CD8\(^+\) T-cells and NK cells were highly reduced upon immunosuppression and not recruited after A. fumigatus infection. Moreover, adoptive CD11b\(^+\) myeloid cell transfer rescued cyclophosphamide immunosuppressed mice from lethal A. fumigatus infection but not cortisone and cyclophosphamide immunosuppressed mice. Our findings illustrate that CD11b\(^+\) myeloid cells are critical for anti-A. fumigatus defense under cyclophosphamide immunosuppressed conditions.}, language = {en} } @article{PaulsHamaratTrufasuetal.2019, author = {Pauls, Dennis and Hamarat, Yasmin and Trufasu, Luisa and Schendzielorz, Tim M. and Gramlich, Gertrud and Kahnt, J{\"o}rg and Vanselow, Jens and Schlosser, Andreas and Wegener, Christian}, title = {Drosophila carboxypeptidase D (SILVER) is a key enzyme in neuropeptide processing required to maintain locomotor activity levels and survival rate}, series = {European Journal of Neuroscience}, volume = {50}, journal = {European Journal of Neuroscience}, number = {9}, doi = {10.1111/ejn.14516}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204863}, pages = {3502-3519}, year = {2019}, abstract = {Neuropeptides are processed from larger preproproteins by a dedicated set of enzymes. The molecular and biochemical mechanisms underlying preproprotein processing and the functional importance of processing enzymes are well-characterised in mammals, but little studied outside this group. In contrast to mammals, Drosophila melanogaster lacks a gene for carboxypeptidase E (CPE ), a key enzyme for mammalian peptide processing. By combining peptidomics and neurogenetics, we addressed the role of carboxypeptidase D (dCPD ) in global neuropeptide processing and selected peptide-regulated behaviours in Drosophila . We found that a deficiency in dCPD results in C-terminally extended peptides across the peptidome, suggesting that dCPD took over CPE function in the fruit fly. dCPD is widely expressed throughout the nervous system, including peptidergic neurons in the mushroom body and neuroendocrine cells expressing adipokinetic hormone. Conditional hypomorphic mutation in the dCPD -encoding gene silver in the larva causes lethality, and leads to deficits in starvation-induced hyperactivity and appetitive gustatory preference, as well as to reduced viability and activity levels in adults. A phylogenomic analysis suggests that loss of CPE is not common to insects, but only occurred in Hymenoptera and Diptera. Our results show that dCPD is a key enzyme for neuropeptide processing and peptide-regulated behaviour in Drosophila . dCPD thus appears as a suitable target to genetically shut down total neuropeptide production in peptidergic neurons. The persistent occurrence of CPD in insect genomes may point to important further CPD functions beyond neuropeptide processing which cannot be fulfilled by CPE.}, language = {en} }