@phdthesis{ElMerahbi2021, author = {El Merahbi, Rabih}, title = {Adrenergic-induced ERK3 pathway drives lipolysis and suppresses energy dissipation}, doi = {10.25972/OPUS-21751}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217510}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Obesity-induced diabetes affects over 400 million people worldwide. Obesity is a complex metabolic disease and is associated with several co-morbidities, all of which negatively affect the individual's quality of life. It is commonly considered that obesity is a result of a positive energy misbalance, as increased food intake and lower expenditure eventually lead to the development of this disease. Moreover, the pathology of obesity is attributed to several genetic and epigenetic factors that put an individual at high risk compared to another. Adipose tissue is the main site of the organism's energy storage. During the time when the nutrients are available in excess, adipocytes acquire triglycerides, which are released during the time of food deprivation in the process of lipolysis (free fatty acids and glycerol released from adipocytes). Uncontrolled lipolysis is the consequent event that contributes to the development of diabetes and paradoxically obesity. To identify the genetic factors aiming for future therapeutic avenues targeting this pathway, we performed a high-throughput screen and identified the Extracellular-regulated kinase 3 (ERK3) as a hit. We demonstrate that β-adrenergic stimulation stabilizes ERK3 leading to the formation of a complex with the co-factor MAP kinase-activated protein kinase 5 (MK5) thereby driving lipolysis. Mechanistically, we identify a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes the expression of the major lipolytic enzyme ATGL. Finally, we provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis, but elevates energy dissipation, promoting lean phenotype and ameliorating diabetes. Moreover, we shed the light on our pharmacological approach in targeting ERK3/MK5 pathways using MK5 specific inhibitor. Already after 1 week of administering the inhibitor, mice showed signs of improvement of their metabolic fitness as showed here by a reduction in induced lipolysis and the elevation in the expression of thermogenic genes. Taken together, our data suggest that targeting the ERK3/MK5 pathway, a previously unrecognized signaling axis in adipose tissue, could be an attractive target for future therapies aiming to combat obesity-induced diabetes.}, subject = {Metabolism}, language = {en} } @article{RegnLaggerbauerJentzschetal.2016, author = {Regn, Michael and Laggerbauer, Bernhard and Jentzsch, Claudia and Ramanujam, Deepak and Ahles, Andrea and Sichler, Sonja and Calzada-Wack, Julia and Koenen, Rory R. and Braun, Attila and Nieswandt, Bernhard and Engelhardt, Stefan}, title = {Peptidase inhibitor 16 is a membrane-tethered regulator of chemerin processing in the myocardium}, series = {Journal of Molecular and Cellular Cardiology}, volume = {99}, journal = {Journal of Molecular and Cellular Cardiology}, doi = {10.1016/j.yjmcc.2016.08.010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187039}, pages = {57-64}, year = {2016}, abstract = {A key response of the myocardium to stress is the secretion of factors with paracrine or endocrine function. Intriguing in this respect is peptidase inhibitor 16 (PI16), a member of the CAP family of proteins which we found to be highly upregulated in cardiac disease. Up to this point, the mechanism of action and physiological function of PI16 remained elusive. Here, we show that PI16 is predominantly expressed by cardiac fibroblasts, which expose PI16 to the interstitium via a glycophosphatidylinositol (-GPI) membrane anchor. Based on a reported genetic association of PI16 and plasma levels of the chemokine chemerin, we investigated whether PI16 regulates post-translational processing of its precursor pro-chemerin. PI16-deficient mice were engineered and found to generate higher levels of processed chemerin than wildtype mice. Purified recombinant PI16 efficiently inhibited cathepsin K, a chemerin-activating protease, in vitro. Moreover, we show that conditioned medium from PI16-overexpressing cells impaired the activation of pro-chemerin. Together, our data indicate that PI16 suppresses chemerin activation in the myocardium and suggest that this circuit may be part of the cardiac stress response.}, language = {en} }