@article{BenaventeReimerRoseetal.1988, author = {Benavente, Ricardo and Reimer, Georg and Rose, Kathleen M. and H{\"u}gle-D{\"o}rr, Barbara and Scheer, Ulrich}, title = {Nucleolar changes after microinjection of antibodies to RNA polymerase I into the nucleus of mammalian cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40666}, year = {1988}, abstract = {After microinjection of antibodies against RNA polymerase I into the nuclei of cultured rat kangaroo (PtKz) and rat (RVF-SMC) cells alterations in nucleolar structure and composition were observed. These were detected by electron microscopy and double-label immunofluorescence microscopy using antibodies to proteins representative of the three major components of the nucleolus. The microinjected antibodies produced a progressive loss of the material of the dense fibrillar component (DFC) from the nucleoli which, at 4 h after injection, were transformed into bodies with purely granular component (GC) structure with attached fibrillar centers (FCs). Concomitantly, numerous extranucleolar aggregates appeared in the nucleoplasm which morphologically resembled fragments of the DFC and contained a protein (fibrillarin) diagnostic for this nucleolar structure. These observations indicate that the topological distribution of the material constituting the DFC can be experimentally influenced in interphase cells, apparently by modulating the transcriptional activity of the rRNA genes. These effects are different from nucleolar lesions induced by inhibitory drugs such as actinomycin D-dependent "nucleolar segregation". The structural alterations induced by antibodies to RNA polymerase I resemble, however, the initial events of nucleolar disintegration during mitotic prophase.}, language = {en} } @article{BenaventeDabauvalleScheeretal.1989, author = {Benavente, Ricardo and Dabauvalle, Marie-Christine and Scheer, Ulrich and Chaly, Nathalie}, title = {Functional role of newly formed pore complexes in postmitotic nuclear reorganization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40754}, year = {1989}, abstract = {Many nuclear proteins are released into the cytoplasm at prometaphase and are transported back into the daughter nuclei at the end of mitosis. To determine the role of this reentry in nuclear remodelling during early interphase, we experimentally manipulated nuclear protein uptake in dividing cells. Recently we and others have shown that signal-dependent, pore complex-mediated uptake of nuclear protein is blocked in living cells on microinjection of the lectin wheat germ agglutinin (WGA), or of antibodies such as PI1 that are directed against WGA-binding pore complex glycoproteins. In the present study, we microinjected mitotic PtKz cells with WGA or antibody PIt and followed nuclear reorganization of the daughter cells by immunofluorescence and electron microscopy. The inhibitory effect on nuclear protein uptake was monitored by co-injection of the karyophilic protein nucleoplasmin. When injected by itself early in mitosis, nucleoplasmin became sequestered into the daughter nuclei as they entered telophase. In contrast, nucleoplasmin was excluded from the daughter nuclei in the presence of WGA or antibody PI1 . Although PtKz cells with blocked nuclear protein uptake completed cytokinesis, their nuclei showed a telophaselike organization characterized by highly condensed chromatin surrounded by a nuclear envelope containing a few pore complexes. These findings suggest that pore complexes become functional as early as telophase, in close coincidence with nuclear envelope reformation. They further indicate that the extensive structural rearrangement of the nucleus during the telophase-G1 transition is dependent on the influx of karyophilic proteins from the cytoplasm through the pore complexes, and is not due solely to chromosome- associated components.}, language = {en} } @article{BellDabauvalleScheer1992, author = {Bell, Peter and Dabauvalle, Marie-Christine and Scheer, Ulrich}, title = {In vitro assembly of prenucleolar bodies in Xenopus egg extract}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34233}, year = {1992}, abstract = {Nuclei assembled in Xenopus egg extract from purified DNA or chromatin resemble their natural counterparts in a number of structural and functional features. However, the most obvious structural element of normal interphase nuclei, the nucleolus, is absent from the in vitro reconstituted nuclei. By EM, cytological silver staining, and immunofluorescence microscopy employing antibodies directed against various nucleolar components we show that nuclei assembled in vitro contain numerous distinct aggregates that resemble prenucleolar bodies (PNBs) by several criteria. Formation of these PNB-like structures requires pore complex-mediated nuclear transport of proteins but is independent of the genetic content of the in vitro nuclei as well as transcriptional and translational events. Our data indicate that nuclei assembled in vitro are capable of initiating early steps of nucleologenesis but that the resulting PNBs are unable to fuse with each other, probably due to the absence of a functional nucleolus organizer. With appropriate modifications, this experimental system should be useful to define and analyze conditions promoting the site-specific assembly of PNBs into a coherent nucleolar body.}, language = {en} }