@article{GesslerKonigMooreetal.1993, author = {Gessler, Manfred and Konig, Anja and Moore, Jay and Qualman, Steven and Arden, Karen and Cavenee, Webster and Bruns, Gail}, title = {Homozygous inactivation of WTI in a Wilms' tumor associated with the WAGR syndrome}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59146}, year = {1993}, abstract = {Wilms' tumor is a childhood nephroblastoma that is postulated to arise through the inactivation of a tumor suppressor gene by a two-hit mechanism. A candidate II p 13 Wilms' tumor gene, WTI, has been cloned and shown to encode a zinc finger protein. Patients with the WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation) have a high risk of developing Wilms' tumor and they carry constitutional deletions of one chromosome II allele encompassing the WTI gene. Analysis of the remaining WTI allele in a Wilms' tumor from a WAGR patient revealed the deletion of a single nucleotide in exon 7. This mutation likely played a key role in tumor formation, as it prevents translation of the DNA-binding zinc finger domain that is essential for the function of the WTI polypeptide as a transcriptional regulator.}, subject = {Biochemie}, language = {en} } @article{SchwarzHameisterGessleretal.1994, author = {Schwarz, Klaus and Hameister, Horst and Gessler, Manfred and Grzeschik, Karl-Heinz and Hansen-Hagge, Thomas E. and Bartram, Claus R.}, title = {Confirmation of the localization of the human recombination activating gene 1 (RAG1) to chromosome 11p13}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59136}, year = {1994}, abstract = {The human recombination activating gene 1 (RAGl) has previously been mapped to chromosomes 14q and 11 p. Here we confirm the chromosome 11 assignment by two independent approaches: autoradiographic and fluorescence in situ hybridization to metaphase spreads and analysis of human-hamster somatic cell hybrid DNA by the polymerase chain reaction (PCR) and Southern blotting. Our results unequivocally localize RAG1 to llp13.}, subject = {Biochemie}, language = {en} } @article{SchwartzNeveEisenmanetal.1994, author = {Schwartz, Faina and Neve, Rachel and Eisenman, Robert and Gessler, Manfred and Bruns, Gail}, title = {A WAGR region gene between PAX-6 and FSHB expressed in fetal brain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59125}, year = {1994}, abstract = {Developmental delay or mental retardation is a frequent component of multi-system anomaly syndromes associated with chromosomal deletions. Isolation of genes involved in the mental dysfunction in these disorders should define loci important in brain formation or function. We have identified a highly conserved locus in the distal part of 11 p 13 that is prominently expressed in fetal brain. Minimal expression is observed in a number of other fetal tissues. The gene maps distal to PAX-6 but proximal to the loci for brain-derived neurotrophic factor (BDNF) and the beta subunit of follicle stimulating hormone (FSHB), within a region previously implicated in the mental retardation component of some WAGR syndrome patients. Within fetal brain, the corresponding transcript is prominent in frontal, motor and primary visual cortex as weil as in the caudate-putamen. The characteristics of this gene, including the striking evolutionary conservation at the locus, suggest that the encoded protein may function in brain development.}, subject = {Biochemie}, language = {en} } @article{HigginsSmilinichSaitetal.1994, author = {Higgins, M. J. and Smilinich, N. J. and Sait, S. and Koenig, A. and Pongratz, J. and Gessler, Manfred and Richard III., C. W. and James, M. R. and Sanford, J. P. and Kim, B.-W. and Cattelane, J. and Nowak, N. J. and Winterpacht, A. and Zabel, B. U. and Munroe, D. J. and Bric, E. and Housman, D. E. and Jones, C. and Nakamura, Y. and Gerhard, D. S. and Shows, T. B.}, title = {An Ordered NotI Fragment Map of Human Chromosome Band 11p15}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45766}, year = {1994}, abstract = {An ordered NotI fragment map containing over 60 loci and encompassing approximately 17 Mb has been constructed for human chromosome band llpl5. Forty-two probes, including 11 NotI-linking cosmids, were subregionaUy mapped to llpl5 using a subset of the Jl-deletion hybrids. These and 23 other probes defining loci previously mapped to 11p15 were hybridized to genomic DNA digested with NotI and 5 other infrequently cleaving restriction enzymes and separated by pulsed-field gel electrophoresis. Thirty-nine distinct NotI fragments were detected encompassing approximately 85\% of the estimated length of llp15. The predicted order of the gene loci used is cenMYODI- PTH-CALCA-ST5-RBTNI-HPX-HBB-RRMlTH/ INS!1GF2-H19-CTSD-MUC2-DRD4-HRAS-RNHtel. This map wiu allow higher resolution mapping of new Ilp15 markers, facilitate positional cloning of disease genes, and provide a framework for the physical mapping of llp15 in clone contigs.}, subject = {Genom / Genkartierung / Genanalyse}, language = {en} } @article{GesslerKoenigArdenetal.1994, author = {Gessler, Manfred and K{\"o}nig, A. and Arden, K. and Grundy, P. and Orkin, S. H. and Sallan, S. and Peters, C. and Ruyle, S. and Mandell, J. and Li, F. and Cavenee, W. and Bruns, G. A.}, title = {Infrequent mutation of the WT1 gene in 77 Wilms' Tumors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34308}, year = {1994}, abstract = {Homozygous deletions in Wilms' tumor DNA have been a key step in the identification and isolation of the WTI gene. Several additional loci are also postulated to contribute to Wilms' tumor formation. To assess the frequency of WTI alterations we have analyzed the WTI locus in a panel of 77 Wilms' tumors. Eight tumors showed evidence for large deletions of several hundred or thousand kilobasepairs of DNA, some of which were also cytogenetically detected. Additional intragenic mutations were detected using more sensitive SSCP analyses to scan all 10 WTI exons. Most of these result in premature stop codons or missense mutations that inactivate the remaining WTI allele. The overall frequency of WTI alterations detected with these methods is less than 15\%. While some mutations may not be detectable with the methods employed, our results suggest that direct alterations of the WTI gene are present in only a small fraction of Wilms' tumors. Thus, mutations at other Wilms' tumor loci or disturbance of interactions between these genes likely play an important role in Wilms' tumor development.}, language = {en} } @techreport{GesslerSimolaBruns1989, author = {Gessler, Manfred and Simola, Kalle O. and Bruns, Gail A. P.}, title = {Cloning of breakpoints of a chromosome translocation identifies the AN2 locus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30177}, year = {1989}, abstract = {Chromosome translocations involving llpl3 have been associated with familial aniridia in two kindreds highlighting the chromosomal localization of the AN2 locus. This locus is also part of the WAGR complex (Wilros tumor, aniridia, genitourinary abnormalities, and mental retardation). In one kindred, the translocation is associated with a deletion, and probes for this region were used to identify and clone the breakpoints of the translocation in the second kindred. Comparison of phage restriction maps exclude the presence of any sizable deletion in this case. Sequences at the chromosome 11 breakpoint are conserved in multiple species, suggesting that the translocation falls within the AN2 gene.}, language = {en} } @article{VortkampGesslerPaslieretal.1994, author = {Vortkamp, Andrea and Gessler, Manfred and Paslier, D. Le and Elaswarapu, R. and Smith, S. and Grzeschik, Karl-Heinz}, title = {Isolation of a yeast artificial chromosome contig spanning the Greig cephalopolysyndactyly syndrome (GCPS) gene region}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30182}, year = {1994}, abstract = {Disruption of the zinc finger gene GLI3 has been shown to be the cause of Greig cephalopolysyndactyly syndrome (GCPS), at least in some GCPS translocation patients. To characterize this genomic region on human chromosome 7p13, we have isolated a VAC contig of more than 1000 kb including the GLI3 gene. In this contig the gene itself spans at least 200-250 kb. A CpG island is located in the vicinity of the 5' region of the known GLI3 cDNA, implying a potential promoter region.}, language = {en} } @article{VortkampFranzGessleretal.1992, author = {Vortkamp, Andrea and Franz, Thomas and Gessler, Manfred and Grzeschik, Karl-Heinz}, title = {Deletion of GLI3 supports the homology of the human Greig cephalopolysyndactyly syndrome (GCPS) and the mouse mutant extra toes (Xt)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30166}, year = {1992}, abstract = {No abstract available}, language = {en} } @misc{GesslerBruns1993, author = {Gessler, Manfred and Bruns, Gail A.}, title = {Sequence of the WT1 upstream region including the Wit-1 gene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30193}, year = {1993}, abstract = {No abstract available}, language = {en} } @article{GesslerPoustkaCaveneeetal.1990, author = {Gessler, Manfred and Poustka, Annemarie and Cavenee, Webster and Neve, Rachael L. and Orkin, Stuart H. and Bruns, Gail A.}, title = {Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30122}, year = {1990}, abstract = {No abstract available}, language = {en} } @article{VortkampGesslerGrzeschik1991, author = {Vortkamp, Andrea and Gessler, Manfred and Grzeschik, Karl-Heinz}, title = {GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30100}, year = {1991}, abstract = {No abstract available}, language = {de} }