@phdthesis{Goetz2020, author = {G{\"o}tz, Ralph}, title = {Super-resolution microscopy of plasma membrane receptors and intracellular pathogens}, doi = {10.25972/OPUS-20716}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207165}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Humans tend to believe in what they can see with their own eyes. Hence, visualization methods like microscopy have always been extremely popular since their invention in the 17th century. With the advent of super-resolution microscopy, the diffraction limit of ~200 - 250 nm could be overcome to enable more detailed insights into biological samples. Especially the single molecule localization microscopy method dSTORM offers the possibility of quantitative bioimaging. Hereby, the repetitive photoswitching of organic dyes in the presence of thiols is exploited to enable a lateral resolution of 20 nm. Another, recently introduced super-resolution method is expansion microscopy (ExM) which physically expands the sample to increase the resolution by the expansion factor from four to even twenty. To enable this, the sample is embedded into a hydrogel, homogenized using an unspecific proteinase and expanded in distilled water. Within this thesis, both methods were used to shed light on plasma membrane receptor distributions and different bacterial and fungal pathogens. In the first part of this thesis dSTORM was used to elucidate the "Receptome", the entirety of all membrane receptors, of the cell line Jurkat T-cells and primary T-cells. Within this project we could successfully visualize and quantify the distribution of the plasma membrane receptors CD2, CD3, CD4, CD5, CD7, CD11a, CD20, CD28, CD45, CD69 and CD105 with receptor densities ranging from 0.8 cluster/µm² in case of CD20 and 81.4 cluster/µm² for the highly abundant CD45 in activated primary T-cells at the basal membrane. Hereby, we could also demonstrate a homogeneous distribution of most receptors, while only few were clustered. In the case of CD3-clusters were detected in Jurkat T-cells and in primary activated T-cells, but not in na{\"i}ve ones, demonstrating the activation of this receptor. This was followed by the application of dSTORM to three different clinical projects involving the receptors CD38, BCMA and CD20 which are immunotherapeutic targets by monoclonal antibodies and CAR T-cells. In the first two projects dSTORM was applied to determine the receptor upregulation upon exposure of various drugs to MM1.S cells or primary multiple myeloma patient cells. This increase in membrane receptor expression can subsequently enhance the efficacy of therapies directed against these receptors. Within the CD20-project, the superior sensitivity of dSTORM compared to flow cytometry could be demonstrated. Hereby, a substantially higher fraction of CD20-positive patient cells was detected by dSTORM than by flow cytometry. In addition, we could show that by dSTORM CD20-positive evaluated cells were eradicated by immunotherapeutic CAR T-cell treatment. These studies were followed by whole cell super-resolution imaging using both LLS-3D dSTORM and 10x ExM to exclude any artifacts caused by interactions with the glass surface. In 10x ExM signal amplification via biotinylated primary antibodies and streptavidin ATTO 643 was essential to detect even single antibodies directed against the heterodimer CD11a with standard confocal microscopes. Albeit probably not quantitative due to the process of gelation, digestion and expansion during the ExM protocol, even some putative dimers of the receptor CD2 could be visualized using 10x ExM-SIM, similar to dSTORM experiments. Within the second part of this thesis, expansion microscopy was established in bacterial and fungal pathogens. ExM enabled not only an isotropic fourfold expansion of Chlamydia trachomatis, but also allowed the discrimination between the two developmental forms by the chlamydial size after expansion into reticulate and elementary bodies. Hereafter, a new α-NH2-ω-N3-C6-ceramide was introduced enabling an efficient fixation and for the first time the use of lipids in both, 4x and 10x ExM, termed sphingolipid ExM. This compound was used to investigate the ceramide uptake and incorporation into the cell membrane of Chlamydia trachomatis and Simkania negevensis. For Chlamydia trachomatis the combined resolution power of 10x ExM and SIM even allowed the visualization of both bacterial membranes within a distance of ~30 nm. Finally, ExM was applied to the three different fungi Ustilago maydis, Fusarium oxysporum and Aspergillus fumigatus after enzymatic removal of the fungal cell wall. In case of Ustilago maydis sporidia this digestion could be applied to both, living cells resulting in protoplasts and to fixed cells, preserving the fungal morphology. This new protocol could be demonstrated for immunostainings and fluorescent proteins of the three different fungi.}, subject = {Mikroskopie}, language = {en} } @phdthesis{Panzer2022, author = {Panzer, Sabine}, title = {Spotlight on Fungal Rhodopsins: A Microscopic and Electrophysiological Study}, doi = {10.25972/OPUS-27185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271859}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Microbial rhodopsins are abundant membrane proteins often capable of ion transport and are found in all three domains of life. Thus, many fungi, especially phyto-associated or phyto-pathogenic ones, contain these green-light-sensing photoreceptors. Proteins that perceive other wavelengths are often well characterized in terms of their impact on fungal biology whereas little is known about the function of fungal rhodopsins. In this work, five fungal rhodopsins, UmOps1 and UmOps2 from the corn smut Ustilago maydis as well as ApOps1, ApOps2 and ApOps3 from the black yeast Aureobasidium pullulans, were characterized electrophysiologically using mammalian expression systems and the patch-clamp technique to explore their ion transport properties. The latter three were modified using a membrane trafficking cassette, termed "2.0" that consists of the lucy rho motif, two Kir2.1 Golgi apparatus trafficking signals and a Kir2.1 endoplasmic reticulum export signal, what resulted in better plasma membrane localization. Rhodopsin mutants were created to identify amino acid residues that are key players in the ion transport process. Current enhancement in the presence of weak organic acids, that was already described before for the fungal rhodopsin CarO from Fusarium fujikuroi (Garc{\´i}a-Mart{\´i}nez et al., 2015; Adam et al., 2018), was investigated for the U. maydis rhodopsins as well as for ApOps2 by supplementing acetate in the patch-clamp electrolyte solutions. All five rhodopsins were found to be proton pumps unidirectionally transporting protons out of the cytosol upon green-light exposure with every rhodopsin exhibiting special features or unique characteristics in terms of the photocurrents. To name just a few, UmOps1, for example, showed a striking pH-dependency with massive enhancement of pump currents in the presence of extracellular acidic pH. Moreover, especially ApOps2 and ApOps3 showed very high current densities, however, the ones of ApOps3 were impaired when exchanging intracellular sodium to cesium. Concerning the mutations, it was found, that the electron releasing group in UmOps1 seems to be involved in the striking pH effect and that the mutation of the proton donor site resulted in almost unfunctional proteins. Moreover, a conserved arginine inside ApOps2 was mutated to turn the proton pump into a channel. Regarding the effect of weak organic acids, acetate was able to induce enhanced pump currents in UmOps1 and ApOps2, but not in UmOps2. Due to the capability of current production upon light illumination, microbial rhodopsins are used in the research field of optogenetics that aims to control neuronal activity by light. ApOps2 was used to test its functionality in differentiated NG108-15 cells addressing the question whether it is a promising candidate that can be used as an optogenetic tool. Indeed, this rhodopsin could be functionally expressed in this experimental system. Furthermore, microscopic studies were done to elucidate the localization of selected rhodopsins in fungal cells. Therefore, conventional (confocal laser scanning or structured illumination microscopy) as well as novel super-resolution techniques (expansion or correlated light and electron microscopy) were used. This was done on U. maydis sporidia, the yeast-like form of this fungus, via eGFP-tagged UmOps1 or UmOps2 expressing strains. Moreover, CarO-eYFP expressing F. fujikuroi was imaged microscopically to confirm the plasma membrane and tonoplast localization (Garc{\´i}a-Mart{\´i}nez et al., 2015) with the help of counterstaining experiments. UmOps1 was found to reside in the plasma membrane, UmOps2 localized to the tonoplast and CarO was indeed found in both of these localizations. This work gains further insight into rhodopsin functions and paves the way for further research in terms of the biological role of rhodopsins in fungal life cycles.}, subject = {Opsin}, language = {en} }