@article{GomezHFelipeMedinaSanchezMartinetal.2016, author = {Gom{\´e}z-H, Laura and Felipe-Medina, Natalia and S{\´a}nchez-Mart{\´i}n, Manuel and Davies, Owen R. and Ramos, Isabel and Garc{\´i}a-Tu{\~n}{\´o}n, Ignacio and de Rooij, Dirk G. and Dereli, Ihsan and T{\´o}th, Attila and Barbero, Jos{\´e} Luis and Benavente, Ricardo and Llano, Elena and Pendas, Alberto M.}, title = {C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms13298}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165907}, pages = {13298}, year = {2016}, abstract = {Meiotic recombination generates crossovers between homologous chromosomes that are essential for genome haploidization. The synaptonemal complex is a 'zipper'-like protein assembly that synapses homologue pairs together and provides the structural framework for processing recombination sites into crossovers. Humans show individual differences in the number of crossovers generated across the genome. Recently, an anonymous gene variant in C14ORF39/SIX6OS1 was identified that influences the recombination rate in humans. Here we show that C14ORF39/SIX6OS1 encodes a component of the central element of the synaptonemal complex. Yeast two-hybrid analysis reveals that SIX6OS1 interacts with the well-established protein synaptonemal complex central element 1 (SYCE1). Mice lacking SIX6OS1 are defective in chromosome synapsis at meiotic prophase I, which provokes an arrest at the pachytene-like stage and results in infertility. In accordance with its role as a modifier of the human recombination rate, SIX6OS1 is essential for the appropriate processing of intermediate recombination nodules before crossover formation.}, language = {en} } @article{FeldbauerSchlegelWeissbeckeretal.2016, author = {Feldbauer, Katrin and Schlegel, Jan and Weissbecker, Juliane and Sauer, Frank and Wood, Phillip G. and Bamberg, Ernst and Terpitz, Ulrich}, title = {Optochemokine Tandem for Light-Control of Intracellular Ca\(^{2+}\)}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0165344}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178921}, year = {2016}, abstract = {An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca\(^{2+}\)-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca\(^{2+}\) by tandem endosomes into the cytosol via CatCh was visualized using the Ca\(^{2+}\)-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca\(^{2+}\) in response to light.}, language = {en} } @article{ChenReiherHermannLuibletal.2016, author = {Chen, Jiangtian and Reiher, Wencke and Hermann-Luibl, Christiane and Sellami, Azza and Cognigni, Paola and Kondo, Shu and Helfrich-F{\"o}rster, Charlotte and Veenstra, Jan A. and Wegener, Christian}, title = {Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is Modulated by PDF}, series = {PLoS Genetics}, volume = {12}, journal = {PLoS Genetics}, number = {9}, doi = {10.1371/journal.pgen.1006346}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178170}, year = {2016}, abstract = {Feeding and sleep are fundamental behaviours with significant interconnections and cross-modulations. The circadian system and peptidergic signals are important components of this modulation, but still little is known about the mechanisms and networks by which they interact to regulate feeding and sleep. We show that specific thermogenetic activation of peptidergic Allatostatin A (AstA)-expressing PLP neurons and enteroendocrine cells reduces feeding and promotes sleep in the fruit fly Drosophila. The effects of AstA cell activation are mediated by AstA peptides with receptors homolog to galanin receptors subserving similar and apparently conserved functions in vertebrates. We further identify the PLP neurons as a downstream target of the neuropeptide pigment-dispersing factor (PDF), an output factor of the circadian clock. PLP neurons are contacted by PDF-expressing clock neurons, and express a functional PDF receptor demonstrated by cAMP imaging. Silencing of AstA signalling and continuous input to AstA cells by tethered PDF changes the sleep/activity ratio in opposite directions but does not affect rhythmicity. Taken together, our results suggest that pleiotropic AstA signalling by a distinct neuronal and enteroendocrine AstA cell subset adapts the fly to a digestive energy-saving state which can be modulated by PDF.}, language = {en} } @article{SenthilanHelfrichFoerster2016, author = {Senthilan, Pingkalai R. and Helfrich-F{\"o}rster, Charlotte}, title = {Rhodopsin 7-The unusual Rhodopsin in Drosophila}, series = {PeerJ}, volume = {4}, journal = {PeerJ}, doi = {10.7717/peerj.2427}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177998}, year = {2016}, abstract = {Rhodopsins are the major photopigments in the fruit fly Drosophila melanogaster. Drosophila express six well-characterized Rhodopsins (Rh1-Rh6) with distinct absorption maxima and expression pattern. In 2000, when the Drosophila genome was published, a novel Rhodopsin gene was discovered: Rhodopsin 7 (Rh7). Rh7 is highly conserved among the Drosophila genus and is also found in other arthropods. Phylogenetic trees based on protein sequences suggest that the seven Drosophila Rhodopsins cluster in three different groups. While Rh1, Rh2 and Rh6 form a "vertebrate-melanopsin-type"-cluster, and Rh3, Rh4 and Rh5 form an "insect-type"-Rhodopsin cluster, Rh7 seem to form its own cluster. Although Rh7 has nearly all important features of a functional Rhodopsin, it differs from other Rhodopsins in its genomic and structural properties, suggesting it might have an overall different role than other known Rhodopsins.}, language = {en} } @article{DjuzenovaFiedlerKatzeretal.2016, author = {Djuzenova, Cholpon S. and Fiedler, Vanessa and Katzer, Astrid and Michel, Konstanze and Deckert, Stefanie and Zimmermann, Heiko and Sukhorukov, Vladimir L. and Flentje, Michael}, title = {Dual PI3K-and mTOR-inhibitor PI-103 can either enhance or reduce the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in tumor cells: The role of drug-irradiation schedule}, series = {Oncotarget}, volume = {7}, journal = {Oncotarget}, number = {25}, doi = {10.18632/oncotarget.9501}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177770}, pages = {38191-38209}, year = {2016}, abstract = {Inhibition of Hsp90 can increase the radiosensitivity of tumor cells. However, inhibition of Hsp90 alone induces the anti-apoptotic Hsp70 and thereby decreases radiosensitivity. Therefore, preventing Hsp70 induction can be a promising strategy for radiosensitization. PI-103, an inhibitor of PI3K and mTOR, has previously been shown to suppress the up-regulation of Hsp70. Here, we explore the impact of combining PI-103 with the Hsp90 inhibitor NVP-AUY922 in irradiated glioblastoma and colon carcinoma cells. We analyzed the cellular response to drug-irradiation treatments by colony-forming assay, expression of several marker proteins, cell cycle progression and induction/repair of DNA damage. Although PI-103, given 24 h prior to irradiation, slightly suppressed the NVP-AUY922-mediated up-regulation of Hsp70, it did not cause radiosensitization and even diminished the radiosensitizing effect of NVP-AUY922. This result can be explained by the activation of PI3K and ERK pathways along with G1-arrest at the time of irradiation. In sharp contrast, PI-103 not only exerted a radiosensitizing effect but also strongly enhanced the radiosensitization by NVP-AUY922 when both inhibitors were added 3 h before irradiation and kept in culture for 24 h. Possible reasons for the observed radiosensitization under this drug-irradiation schedule may be a down-regulation of PI3K and ERK pathways during or directly after irradiation, increased residual DNA damage and strong G2/M arrest 24 h thereafter. We conclude that duration of drug treatment before irradiation plays a key role in the concomitant targeting of PI3K/mTOR and Hsp90 in tumor cells.}, language = {en} } @article{EndresKneitzOrthetal.2016, author = {Endres, Marcel and Kneitz, Susanne and Orth, Martin F. and Perera, Ruwan K. and Zernecke, Alma and Butt, Elke}, title = {Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1)}, series = {Oncotarget}, volume = {7}, journal = {Oncotarget}, number = {39}, doi = {10.18632/oncotarget.11720}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176920}, pages = {64244-64259}, year = {2016}, abstract = {The process of tumor invasion requires degradation of extracellular matrix by proteolytic enzymes. Cancer cells form protrusive invadopodia, which produce and release matrix metalloproteinases (MMPs) to degrade the basement membrane thereby enabling metastasis. We investigated the effect of LASP1, a newly identified protein in invadopodia, on expression, secretion and activation of MMPs in invasive breast tumor cell lines. By analyzing microarray data of in-house generated control and LASP1-depleted MDA-MB-231 breast cancer cells, we observed downregulation of MMP1, -3 and -9 upon LASP1 depletion. This was confirmed by Western blot analysis. Conversely, rescue experiments restored in part MMP expression and secretion. The regulatory effect of LASP1 on MMP expression was also observed in BT-20 breast cancer cells as well as in prostate and bladder cancer cell lines. In line with bioinformatic FunRich analysis of our data, which mapped a high regulation of transcription factors by LASP1, public microarray data analysis detected a correlation between high LASP1 expression and enhanced c-Fos levels, a protein that is part of the transcription factor AP-1 and known to regulate MMP expression. Compatibly, in luciferase reporter assays, AP-1 showed a decreased transcriptional activity after LASP1 knockdown. Zymography assays and Western blot analysis revealed an additional promotion of MMP secretion into the extracellular matrix by LASP1, thus, most likely, altering the microenvironment during cancer progression. The newly identified role of LASP1 in regulating matrix degradation by affecting MMP transcription and secretion elucidated the migratory potential of LASP1 overexpressing aggressive tumor cells in earlier studies.}, language = {en} } @article{KramerPiperEstevezetal.2016, author = {Kramer, Susanne and Piper, Sophie and Estevez, Antonio and Carrington, Mark}, title = {Polycistronic trypanosome mRNAs are a target for the exosome}, series = {Molecular and Biochemical Parasitology}, volume = {205}, journal = {Molecular and Biochemical Parasitology}, number = {1-2}, doi = {10.1016/j.molbiopara.2016.02.009}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191350}, pages = {1-5}, year = {2016}, abstract = {Eukaryotic cells have several mRNA quality control checkpoints to avoid the production of aberrant proteins. Intron-containing mRNAs are actively degraded by the nuclear exosome, prevented from nuclear exit and, if these systems fail, degraded by the cytoplasmic NMD machinery. Trypanosomes have only two introns. However, they process mRNA5 from long polycistronic precursors by trans-splicing and polycistronic mRNA molecules frequently arise from any missed splice site. Here, we show that RNAi depletion of the trypanosome exosome, but not of the cytoplasmic 5'-3' exoribonuclease XRNA or the NMD helicase UPF1, causes accumulation of oligocistronic mRNA5. We have also revisited the localization of the trypanosome exosome by expressing eYFP-fusion proteins of the exosome subunits RRP44 and RRP6. Both proteins are significantly enriched in the nucleus. Together with published data, our data suggest a major nuclear function of the trypanosome exosome in rRNA, snoRNA and mRNA quality control.}, language = {en} } @article{SinghVermaAkhoonetal.2016, author = {Singh, Krishna P. and Verma, Neeraj and Akhoon, Bashir A . and Bhatt, Vishal and Gupta, Shishir K. and Gupta, Shailendra K. and Smita, Suchi}, title = {Sequence-based approach for rapid identification of cross-clade CD8+ T-cell vaccine candidates from all high-risk HPV strains}, series = {3 Biotech}, volume = {6}, journal = {3 Biotech}, doi = {10.1007/s13205-015-0352-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191056}, pages = {10}, year = {2016}, abstract = {Human papilloma virus (HPV) is the primary etiological agent responsible for cervical cancer in women. Although in total 16 high-risk HPV strains have been identified so far. Currently available commercial vaccines are designed by targeting mainly HPV16 and HPV18 viral strains as these are the most common strains associated with cervical cancer. Because of the high level of antigenic specificity of HPV capsid antigens, the currently available vaccines are not suitable to provide cross-protection from all other high-risk HPV strains. Due to increasing reports of cervical cancer cases from other HPV high-risk strains other than HPV16 and 18, it is crucial to design vaccine that generate reasonable CD8+ T-cell responses for possibly all the high-risk strains. With this aim, we have developed a computational workflow to identify conserved cross-clade CD8+ T-cell HPV vaccine candidates by considering E1, E2, E6 and E7 proteins from all the high-risk HPV strains. We have identified a set of 14 immunogenic conserved peptide fragments that are supposed to provide protection against infection from any of the high-risk HPV strains across globe.}, language = {en} } @article{GrimmKleinKopeketal.2016, author = {Grimm, Jonathan B. and Klein, Teresa and Kopek, Benjamin G. and Shtengel, Gleb and Hess, Harald F. and Sauer, Markus and Lavis, Luke D.}, title = {Synthesis of a far-red photoactivatable silicon-containing rhodamine for super-resolution microscopy}, series = {Angewandte Chemie International Edition}, volume = {55}, journal = {Angewandte Chemie International Edition}, number = {5}, doi = {10.1002/anie.201509649}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191069}, pages = {1723-1727}, year = {2016}, abstract = {The rhodamine system is a flexible framework for building small-molecule fluorescent probes. Changing N-substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si-containing analogue of Q-rhodamine. This probe is the first example of a "caged" Si-rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red-shifted to allow multicolor imaging. The dye is a useful label for super-resolution imaging and constitutes a new scaffold for far-red fluorogenic molecules.}, language = {en} } @article{WoelflingBeckerUhletal.2016, author = {W{\"o}lfling, Mirko and Becker, Mira C. and Uhl, Britta and Traub, Anja and Fiedler, Konrad}, title = {How differences in the settling behaviour of moths (Lepidoptera) may contribute to sampling bias when using automated light traps}, series = {European Journal of Entomology}, volume = {113}, journal = {European Journal of Entomology}, doi = {10.14411/eje.2016.066}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191154}, pages = {502-506}, year = {2016}, abstract = {Quantitative community-wide moth surveys frequently employ flight-interception traps equipped with UV-light emitting sources as attractants. It has long been known that moth species differ in their responsiveness to light traps. We studied how the settling behaviour of moths at a light trap may further contribute to sampling bias. We observed the behaviour of 1426 moths at a light tower. Moths were classified as either, settling and remaining still after arrival, or continually moving on the gauze for extended periods of time. Moths that did not move after settling may not end up in the sampling container of the light trap and therefore are under-represented in automated trap samples relative to their true proportions in the community. Our analyses revealed highly significant behavioural differences between moths that differed in body size. Small moths were more likely to remain stationary after settling. As a corollary, representatives of three taxa, which in Europe are predominantly small species (Nolidae, Geometridae: Eupitheciini, Erebidae: Lithosiini), usually settled down immediately, whereas most other moths remained active on or flying around the trap for some time. Moth behaviour was also modulated by ambient temperature. At high temperatures, they were less likely to settle down immediately, but this behavioural difference was most strongly apparent among medium-sized moths. These results indicate the likely extent of the sampling bias when analysing and interpreting automated light-trap samples. Furthermore, to control for temperature modulated sampling bias temperature should always be recorded when sampling moths using flight-interception traps.}, language = {en} } @article{ElHajjDittrichBoecketal.2016, author = {El Hajj, Nady and Dittrich, Marcus and B{\"o}ck, Julia and Kraus, Theo F. J. and Nanda, Indrajit and M{\"u}ller, Tobias and Seidmann, Larissa and Tralau, Tim and Galetzka, Danuta and Schneider, Eberhard and Haaf, Thomas}, title = {Epigenetic dysregulation in the developing Down syndrome cortex}, series = {Epigenetics}, volume = {11}, journal = {Epigenetics}, number = {8}, doi = {10.1080/15592294.2016.1192736}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191239}, pages = {563-578}, year = {2016}, abstract = {Using Illumina 450K arrays, 1.85\% of all analyzed CpG sites were significantly hypermethylated and 0.31\% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3-11times more hyper- than hypo-methylated sites. Reduced NRSF/REST expression due to upregulation of DYRK1A (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of DNMT3L (on chromosome 21q22.4) could lead to de novo methylation in neuroprogenitors, which then persists in the fetal DS brain where DNMT3A and DNMT3B become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (PCDHG) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of PCDHG subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased PCDHG expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of PCDHG and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions.}, language = {en} } @article{MederKoenigOzretićetal.2016, author = {Meder, Lydia and K{\"o}nig, Katharina and Ozretić, Luka and Schultheis, Anne M. and Ueckeroth, Frank and Ade, Carsten P. and Albus, Kerstin and Boehm, Diana and Rommerscheidt-Fuss, Ursula and Florin, Alexandra and Buhl, Theresa and Hartmann, Wolfgang and Wolf, J{\"u}rgen and Merkelbach-Bruse, Sabine and Eilers, Martin and Perner, Sven and Heukamp, Lukas C. and Buettner, Reinhard}, title = {NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas}, series = {International Journal of Cancer}, volume = {138}, journal = {International Journal of Cancer}, number = {4}, doi = {10.1002/ijc.29835}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190853}, pages = {927-938}, year = {2016}, abstract = {Small cell lung cancers (SCLCs) and extrapulmonary small cell cancers (SCCs) are very aggressive tumors arising de novo as primary small cell cancer with characteristic genetic lesions in RB1 and TP53. Based on murine models, neuroendocrine stem cells of the terminal bronchioli have been postulated as the cellular origin of primary SCLC. However, both in lung and many other organs, combined small cell/non-small cell tumors and secondary transitions from non-small cell carcinomas upon cancer therapy to neuroendocrine and small cell tumors occur. We define features of "small cell-ness" based on neuroendocrine markers, characteristic RB1 and TP53 mutations and small cell morphology. Furthermore, here we identify a pathway driving the pathogenesis of secondary SCLC involving inactivating NOTCH mutations, activation of the NOTCH target ASCL1 and canonical WNT-signaling in the context of mutual bi-allelic RB1 and TP53 lesions. Additionaly, we explored ASCL1 dependent RB inactivation by phosphorylation, which is reversible by CDK5 inhibition. We experimentally verify the NOTCH-ASCL1-RB-p53 signaling axis in vitro and validate its activation by genetic alterations in vivo. We analyzed clinical tumor samples including SCLC, SCC and pulmonary large cell neuroendocrine carcinomas and adenocarcinomas using amplicon-based Next Generation Sequencing, immunohistochemistry and fluorescence in situ hybridization. In conclusion, we identified a novel pathway underlying rare secondary SCLC which may drive small cell carcinomas in organs other than lung, as well.}, language = {en} } @article{BlaettnerDasPaprotkaetal.2016, author = {Bl{\"a}ttner, Sebastian and Das, Sudip and Paprotka, Kerstin and Eilers, Ursula and Krischke, Markus and Kretschmer, Dorothee and Remmele, Christian W. and Dittrich, Marcus and M{\"u}ller, Tobias and Schuelein-Voelk, Christina and Hertlein, Tobias and Mueller, Martin J. and Huettel, Bruno and Reinhardt, Richard and Ohlsen, Knut and Rudel, Thomas and Fraunholz, Martin J.}, title = {Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes}, series = {PLoS Pathogens}, volume = {12}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1005857}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180380}, year = {2016}, abstract = {Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection.}, language = {en} } @article{FischerHelfrichFoersterPeschel2016, author = {Fischer, Robin and Helfrich-F{\"o}rster, Charlotte and Peschel, Nicolai}, title = {GSK-3 Beta Does Not Stabilize Cryptochrome in the Circadian Clock of Drosophila}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0146571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180370}, year = {2016}, abstract = {Cryptochrome (CRY) is the primary photoreceptor of Drosophila's circadian clock. It resets the circadian clock by promoting light-induced degradation of the clock protein Timeless (TIM) in the proteasome. Under constant light, the clock stops because TIM is absent, and the flies become arrhythmic. In addition to TIM degradation, light also induces CRY degradation. This depends on the interaction of CRY with several proteins such as the E3 ubiquitin ligases Jetlag (JET) and Ramshackle (BRWD3). However, CRY can seemingly also be stabilized by interaction with the kinase Shaggy (SGG), the GSK-3 beta fly orthologue. Consequently, flies with SGG overexpression in certain dorsal clock neurons are reported to remain rhythmic under constant light. We were interested in the interaction between CRY, Ramshackle and SGG and started to perform protein interaction studies in S2 cells. To our surprise, we were not able to replicate the results, that SGG overexpression does stabilize CRY, neither in S2 cells nor in the relevant clock neurons. SGG rather does the contrary. Furthermore, flies with SGG overexpression in the dorsal clock neurons became arrhythmic as did wild-type flies. Nevertheless, we could reproduce the published interaction of SGG with TIM, since flies with SGG overexpression in the lateral clock neurons shortened their free-running period. We conclude that SGG does not directly interact with CRY but rather with TIM. Furthermore we could demonstrate, that an unspecific antibody explains the observed stabilization effects on CRY.}, language = {en} } @article{VieraElMerahbiNieswandtetal.2016, author = {Viera, Jonathan Trujillo and El-Merahbi, Rabih and Nieswandt, Bernhard and Stegner, David and Sumara, Grzegorz}, title = {Phospholipases D1 and D2 Suppress Appetite and Protect against Overweight}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0157607}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179729}, year = {2016}, abstract = {Obesity is a major risk factor predisposing to the development of peripheral insulin resistance and type 2 diabetes (T2D). Elevated food intake and/or decreased energy expenditure promotes body weight gain and acquisition of adipose tissue. Number of studies implicated phospholipase D (PLD) enzymes and their product, phosphatidic acid (PA), in regulation of signaling cascades controlling energy intake, energy dissipation and metabolic homeostasis. However, the impact of PLD enzymes on regulation of metabolism has not been directly determined so far. In this study we utilized mice deficient for two major PLD isoforms, PLD1 and PLD2, to assess the impact of these enzymes on regulation of metabolic homeostasis. We showed that mice lacking PLD1 or PLD2 consume more food than corresponding control animals. Moreover, mice deficient for PLD2, but not PLD1, present reduced energy expenditure. In addition, deletion of either of the PLD enzymes resulted in development of elevated body weight and increased adipose tissue content in aged animals. Consistent with the fact that elevated content of adipose tissue predisposes to the development of hyperlipidemia and insulin resistance, characteristic for the pre-diabetic state, we observed that Pld1\(^{-/-}\) and Pld2\(^{-/-}\) mice present elevated free fatty acids (FFA) levels and are insulin as well as glucose intolerant. In conclusion, our data suggest that deficiency of PLD1 or PLD2 activity promotes development of overweight and diabetes.}, language = {en} } @article{HartelGloggerJonesetal.2016, author = {Hartel, Andreas J.W. and Glogger, Marius and Jones, Nicola G. and Abuillan, Wasim and Batram, Christopher and Hermann, Anne and Fenz, Susanne F. and Tanaka, Motomu and Engstler, Markus}, title = {N-glycosylation enables high lateral mobility of GPI-anchored proteins at a molecular crowding threshold}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12870}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171368}, year = {2016}, abstract = {The protein density in biological membranes can be extraordinarily high, but the impact of molecular crowding on the diffusion of membrane proteins has not been studied systematically in a natural system. The diversity of the membrane proteome of most cells may preclude systematic studies. African trypanosomes, however, feature a uniform surface coat that is dominated by a single type of variant surface glycoprotein (VSG). Here we study the density-dependence of the diffusion of different glycosylphosphatidylinositol-anchored VSG-types on living cells and in artificial membranes. Our results suggest that a specific molecular crowding threshold (MCT) limits diffusion and hence affects protein function. Obstacles in the form of heterologous proteins compromise the diffusion coefficient and the MCT. The trypanosome VSG-coat operates very close to its MCT. Importantly, our experiments show that N-linked glycans act as molecular insulators that reduce retarding intermolecular interactions allowing membrane proteins to function correctly even when densely packed.}, language = {en} } @article{PetersHempAppelhansetal.2016, author = {Peters, Marcell K. and Hemp, Andreas and Appelhans, Tim and Behler, Christina and Classen, Alice and Detsch, Florian and Ensslin, Andreas and Ferger, Stefan W. and Frederiksen, Sara B. and Gebert, Frederike and Haas, Michael and Helbig-Bonitz, Maria and Hemp, Claudia and Kindeketa, William J. and Mwangomo, Ephraim and Ngereza, Christine and Otte, Insa and R{\"o}der, Juliane and Rutten, Gemma and Costa, David Schellenberger and Tardanico, Joseph and Zancolli, Giulia and Deckert, J{\"u}rgen and Eardley, Connal D. and Peters, Ralph S. and R{\"o}del, Mark-Oliver and Schleuning, Matthias and Ssymank, Axel and Kakengi, Victor and Zhang, Jie and B{\"o}hning-Gaese, Katrin and Brandl, Roland and Kalko, Elisabeth K.V. and Kleyer, Michael and Nauss, Thomas and Tschapka, Marco and Fischer, Markus and Steffan-Dewenter, Ingolf}, title = {Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms13736}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169374}, year = {2016}, abstract = {The factors determining gradients of biodiversity are a fundamental yet unresolved topic in ecology. While diversity gradients have been analysed for numerous single taxa, progress towards general explanatory models has been hampered by limitations in the phylogenetic coverage of past studies. By parallel sampling of 25 major plant and animal taxa along a 3.7 km elevational gradient on Mt. Kilimanjaro, we quantify cross-taxon consensus in diversity gradients and evaluate predictors of diversity from single taxa to a multi-taxa community level. While single taxa show complex distribution patterns and respond to different environmental factors, scaling up diversity to the community level leads to an unambiguous support for temperature as the main predictor of species richness in both plants and animals. Our findings illuminate the influence of taxonomic coverage for models of diversity gradients and point to the importance of temperature for diversification and species coexistence in plant and animal communities.}, language = {en} } @article{KilincEhrigPessianetal.2016, author = {Kilinc, Mehmet Okyay and Ehrig, Klaas and Pessian, Maysam and Minev, Boris R. and Szalay, Aladar A.}, title = {Colonization of xenograft tumors by oncolytic vaccinia virus (VACV) results in enhanced tumor killing due to the involvement of myeloid cells}, series = {Journal of Translational Medicine}, volume = {14}, journal = {Journal of Translational Medicine}, number = {340}, doi = {10.1186/s12967-016-1096-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168914}, year = {2016}, abstract = {Background The mechanisms by which vaccinia virus (VACV) interacts with the innate immune components are complex and involve different mechanisms. iNOS-mediated NO production by myeloid cells is one of the central antiviral mechanisms and this study aims to investigate specifically whether iNOS-mediated NO production by myeloid cells, is involved in tumor eradication following the virus treatment. Methods Human colon adenocarcinoma (HCT-116) xenograft tumors were infected by VACV. Infiltration of iNOS\(^{+}\) myeloid cell population into the tumor, and virus titer was monitored following the treatment. Single-cell suspensions were stained for qualitative and quantitative flow analysis. The effect of different myeloid cell subsets on tumor growth and colonization were investigated by depletion studies. Finally, in vitro culture experiments were carried out to study NO production and tumor cell killing. Student's t test was used for comparison between groups in all of the experiments. Results Infection of human colon adenocarcinoma (HCT-116) xenograft tumors by VACV has led to recruitment of many CD11b\(^{+}\) ly6G\(^{+}\) myeloid-derived suppressor cells (MDSCs), with enhanced iNOS expression in the tumors, and to an increased intratumoral virus titer between days 7 and 10 post-VACV therapy. In parallel, both single and multiple rounds of iNOS-producing cell depletions caused very rapid tumor growth within the same period after virus injection, indicating that VACV-induced iNOS\(^{+}\) MDSCs could be an important antitumor effector component. A continuous blockade of iNOS by its specific inhibitor, L-NIL, showed similar tumor growth enhancement 7-10 days post-infection. Finally, spleen-derived iNOS+ MDSCs isolated from virus-injected tumor bearing mice produced higher amounts of NO and effectively killed HCT-116 cells in in vitro transwell experiments. Conclusions We initially hypothesized that NO could be one of the factors that limits active spreading of the virus in the cancerous tissue. In contrast to our initial hypothesis, we observed that PMN-MDSCs were the main producer of NO through iNOS and NO provided a beneficial antitumor effect, The results strongly support an important novel role for VACV infection in the tumor microenvironment. VACV convert tumor-promoting MDSCs into tumor-killing cells by inducing higher NO production.}, language = {en} } @article{JoschinskiBeerHelfrichFoersteretal.2016, author = {Joschinski, Jens and Beer, Katharina and Helfrich-F{\"o}rster, Charlotte and Krauss, Jochen}, title = {Pea Aphids (Hemiptera: Aphididae) Have Diurnal Rhythms When Raised Independently of a Host Plant}, series = {Journal of Insect Science}, volume = {16}, journal = {Journal of Insect Science}, number = {1}, doi = {10.1093/jisesa/iew013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168783}, pages = {31}, year = {2016}, abstract = {Seasonal timing is assumed to involve the circadian clock, an endogenous mechanism to track time and measure day length. Some debate persists, however, and aphids were among the first organisms for which circadian clock involvement was questioned. Inferences about links to phenology are problematic, as the clock itself is little investigated in aphids. For instance, it is unknown whether aphids possess diurnal rhythms at all. Possibly, the close interaction with host plants prevents independent measurements of rhythmicity. We reared the pea aphid Acyrthosiphon pisum (Harris) on an artificial diet, and recorded survival, moulting, and honeydew excretion. Despite their plant-dependent life style, aphids were independently rhythmic under light-dark conditions. This first demonstration of diurnal aphid rhythms shows that aphids do not simply track the host plant's rhythmicity.}, language = {en} } @article{HackerEscalonaEspinosaConsalvoetal.2016, author = {Hacker, Ulrich T. and Escalona-Espinosa, Laura and Consalvo, Nicola and Goede, Valentin and Schiffmann, Lars and Scherer, Stefan J. and Hedge, Priti and Van Cutsem, Eric and Coutelle, Oliver and B{\"u}ning, Hildegard}, title = {Evaluation of Angiopoietin-2 as a biomarker in gastric cancer: results from the randomised phase III AVAGAST trial}, series = {British Journal of Cancer}, volume = {114}, journal = {British Journal of Cancer}, number = {8}, doi = {10.1038/bjc.2016.30}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189578}, pages = {855-862}, year = {2016}, abstract = {Background: In the phase III AVAGAST trial, the addition of bevacizumab to chemotherapy improved progression-free survival (PFS) but not overall survival (OS) in patients with advanced gastric cancer. We studied the role of Angiopoietin-2 (Ang-2), a key driver of tumour angiogenesis, metastasis and resistance to antiangiogenic treatment, as a biomarker. Methods: Previously untreated, advanced gastric cancer patients were randomly assigned to receive bevacizumab (n = 387) or placebo (n = 387) in combination with chemotherapy. Plasma collected at baseline and at progression was analysed by ELISA. The role of Ang-2 as a prognostic and a predictive biomarker of bevacizumab efficacy was studied using a Cox proportional hazards model. Logistic regression analysis was applied for correlations with metastasis. Results: Median baseline plasma Ang-2 levels were lower in Asian (2143 pg ml\(^-\)\(^1\)) vs non-Asian patients (3193 pg ml\(^-\)\(^1\)), P<0.0001. Baseline plasma Ang-2 was identified as an independent prognostic marker for OS but did not predict bevacizumab efficacy alone or in combination with baseline VEGF. Baseline plasma Ang-2 correlated with the frequency of liver metastasis (LM) at any time: Odds ratio per 1000 pg ml\(^-\)\(^1\) increase: 1.19; 95\% CI 1.10-1.29; P<0.0001 (non-Asians) and 1.37; 95\% CI 1.13-1.64; P = 0.0010 (Asians). Conclusions: Baseline plasma Ang-2 is a novel prognostic biomarker for OS in advanced gastric cancer strongly associated with LM. Differences in Ang-2 mediated vascular response may, in part, account for outcome differences between Asian and non-Asian patients; however, data have to be further validated. Ang-2 is a promising drug target in gastric cancer.}, language = {en} }