@article{SchmidtHaywardCoelhoetal.2019, author = {Schmidt, Thomas S. B. and Hayward, Matthew R. and Coelho, Luiis P. and Li, Simone S. and Costea, Paul I. and Voigt, Anita Y. and Wirbel, Jakob and Maistrenko, Oleksandr M. and Alves, Renato J. C. and Bergsten, Emma and de Beaufort, Carine and Sobhani, Iradj and Heintz-Buschart, Anna and Sunagawa, Shinichi and Zeller, Georg and Wilmes, Paul and Bork, Peer}, title = {Extensive transmission of microbes along the gastrointestinal tract}, series = {eLife}, volume = {8}, journal = {eLife}, doi = {10.7554/eLife.42693}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228954}, pages = {e42693, 1-18}, year = {2019}, abstract = {The gastrointestinal tract is abundantly colonized by microbes, yet the translocation of oral species to the intestine is considered a rare aberrant event, and a hallmark of disease. By studying salivary and fecal microbial strain populations of 310 species in 470 individuals from five countries, we found that transmission to, and subsequent colonization of, the large intestine by oral microbes is common and extensive among healthy individuals. We found evidence for a vast majority of oral species to be transferable, with increased levels of transmission in colorectal cancer and rheumatoid arthritis patients and, more generally, for species described as opportunistic pathogens. This establishes the oral cavity as an endogenous reservoir for gut microbial strains, and oral-fecal transmission as an important process that shapes the gastrointestinal microbiome in health and disease.}, subject = {Barrier}, language = {en} } @article{CoelhoAlvesMonteiroetal.2019, author = {Coelho, Luis Pedro and Alves, Renato and Monteiro, Paulo and Huerta-Cepas, Jaime and Freitas, Ana Teresa and Bork, Peer}, title = {NG-meta-profiler: fast processing of metagenomes using NGLess, a domain-specific language}, series = {Microbiome}, volume = {7}, journal = {Microbiome}, number = {84}, doi = {10.1186/s40168-019-0684-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223161}, year = {2019}, abstract = {Background Shotgun metagenomes contain a sample of all the genomic material in an environment, allowing for the characterization of a microbial community. In order to understand these communities, bioinformatics methods are crucial. A common first step in processing metagenomes is to compute abundance estimates of different taxonomic or functional groups from the raw sequencing data. Given the breadth of the field, computational solutions need to be flexible and extensible, enabling the combination of different tools into a larger pipeline. Results We present NGLess and NG-meta-profiler. NGLess is a domain specific language for describing next-generation sequence processing pipelines. It was developed with the goal of enabling user-friendly computational reproducibility. It provides built-in support for many common operations on sequencing data and is extensible with external tools with configuration files. Using this framework, we developed NG-meta-profiler, a fast profiler for metagenomes which performs sequence preprocessing, mapping to bundled databases, filtering of the mapping results, and profiling (taxonomic and functional). It is significantly faster than either MOCAT2 or htseq-count and (as it builds on NGLess) its results are perfectly reproducible. Conclusions NG-meta-profiler is a high-performance solution for metagenomics processing built on NGLess. It can be used as-is to execute standard analyses or serve as the starting point for customization in a perfectly reproducible fashion. NGLess and NG-meta-profiler are open source software (under the liberal MIT license) and can be downloaded from https://ngless.embl.de or installed through bioconda.}, language = {en} }