@phdthesis{Bettaga2014, author = {Bettaga, Noomen}, title = {Bedeutung der NO-sensitiven Guanylyl Cyclase bei der Angiogenese und der Arteriogenese in der Maus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111284}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Stickstoffmonoxid (NO) spielt eine wichtige Rolle bei Gef{\"a}ßremodelling-Prozessen wie Angiogenese und Arteriogenese. Die NO-Synthese im Gef{\"a}ßsystem wird haupts{\"a}chlich durch die endotheliale NO-Synthase (eNOS) gew{\"a}hrleistet. Sie kann durch verschiedene Faktoren wie Scherkr{\"a}fte und Zytokine wie der vaskul{\"a}re endotheliale Wachstumsfaktor (VEGF) reguliert werden. VEGF ist ein wichtiger Stimulator der Angiogenese und wird w{\"a}hrend dieses Prozesses hochreguliert. Die meisten physiologischen Effekte von NO werden durch die NO-sensitive Guanylyl-Cyclase (NO-GC) vermittelt. Als Hauptrezeptor f{\"u}r NO produziert die NO-GC den sekund{\"a}ren Botenstoff cyklisches Guanosinmonophosphat (cGMP) und f{\"u}hrt dadurch zur Stimulation der verschiedenen Effektoren wie z.B. der PKG. Ob die Wirkung von NO in Angiogenese und Arteriogenese ebenfalls durch NO-GC vermittelt wird, war bis zum Beginn dieser Arbeit noch unklar. Die NO-GC besteht aus zwei Untereinheiten (α und ß). Die Deletion der ß1-Untereinheit in M{\"a}usen resultiert in einer vollst{\"a}ndigen Knockout Maus (GCKO). Mithilfe des Cre-LoxP-Systems wurden zus{\"a}tzlich zellspezifische Knockout-M{\"a}use f{\"u}r glatte Muskelzellen (SMC-GCKO) und Endothelzellen (EC-GCKO) generiert. Um die Rolle der NO-GC in der Angiogenese und Arteriogenese zu untersuchen, wurden drei gut etablierte Methoden benutzt. Im ersten Teil des Projekts sollte die Expression der NO-GC in Endothelzellen untersucht werden. Zu diesem Zweck wurde die reverse Transkriptase-Polymerase-Kettenreaktion (RT-PCR) benutzt. Die Ergebnisse zeigen, dass die NO-GC in Endothelzellen der Lunge nur {\"a}ußerst gering wenig exprimiert ist. Durch den Aortenring-Assay wurde eine Rolle der NO-GC bei der VEGF-vermittelten Angiogenese festgestellt. Dabei zeigte sich eine st{\"a}rkere Angiogeneserate bei globaler Abwesenheit der NO-GC. Bei Fehlen der NO-GC ausschließlich in Endothelzellen zeigte sich kein Unterschied in den aussprossenden Aorten im Vergleich zu den Kontroll-Tieren. Dies zeigt, dass die NO-GC in Endothelzellen sehr wahrscheinlich keine Rolle bei der VEGF-vermittelten Angiogenese spielt. Im zweiten Teil wurde die Rolle der NO-GC bei der Angiogenese in einem in vivo-Modell untersucht. In dem Modell der Sauerstoff-induzierten-Retinopathie zeigten die GCKO-M{\"a}use eine verringerte Vaso-Obliteration, eine verlangsamte Angiogenese und eine erh{\"o}hte Tuft-Bildung. {\"A}hnliche Ergebnisse wurden bei den SMC-GCKO-Tieren beobachtet. EC-GCKO-M{\"a}use zeigten eine gegen{\"u}ber den Kontroll-Tieren unver{\"a}nderte Vaso-Obliteration, Angiogeneserate und Tuft-Bildung. Diese Ergebnisse lassen darauf schließen, dass die NO-GC in Endothelzellen keine Rolle spielt. Immunfluoreszenz-Aufnahmen zeigten die Expression von NO-GC in Perizyten der Gef{\"a}ßkapillaren der Mausretina. Daher k{\"o}nnte die NO-GC in diesem Zelltyp letztendlich f{\"u}r die Effekte bei den GCKO- und SMC-GCKO-Tieren verantwortlich sein. Im letzten Teil dieser Arbeit wurde eine Versuchsreihe unter Anwendung des Hinterlauf-Isch{\"a}mie-Modells durchgef{\"u}hrt. Hierbei entwickelten die Pfoten aller GCKO- und teilweise der SMC-GCKO-Tiere nach der Ligation der Femoralarterie eine Nekrose. Die Regeneration der Hinterl{\"a}ufe der EC-GCKO-Tiere nach der Operation verlief normal. Diese Ergebnisse schließen eine bedeutende Rolle der NO-GC in Endothelzellen aus, zeigen allerdings, dass die NO-GC in den glatten Muskelzellen essentiell f{\"u}r den Arteriogenese-Prozess ist. Zusammengefasst f{\"u}hrt die Deletion der NO-GC in glatten Muskelzellen und wahrscheinlich auch in Perizyten zur einer verlangsamten Angiogenese und Inhibierung der Arteriogenese.}, subject = {Guanylylcyclase}, language = {de} } @phdthesis{Gnamlin2015, author = {Gnamlin, Prisca}, title = {Use of Tumor Vasculature for Successful Treatment of Carcinomas by Oncolytic Vaccinia Virus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119019}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Tumor-induced angiogenesis is of major interest for oncology research. Vascular endothelial growth factor (VEGF) is the most potent angiogenic factor characterized so far. VEGF blockade was shown to be sufficient for angiogenesis inhibition and subsequent tumor regression in several preclinical tumor models. Bevacizumab was the first treatment targeting specifically tumor-induced angiogenesis through VEGF blockade to be approved by the Food and Drugs Administration (FDA) for cancer treatment. However, after very promising results in preclinical evaluations, VEGF blockade did not show the expected success in patients. Some tumors became resistant to VEGF blockade. Several factors have been accounted responsible, the over-expression of other angiogenic factors, the noxious influence of VEFG blockade on normal tissues, the selection of hypoxia resistant neoplastic cells, the recruitment of hematopoietic progenitor cells and finally the transient nature of angiogenesis inhibition by VEGF blockade. The development of blocking agents against other angiogenic factors like placental growth factor (PlGF) and Angiopoietin-2 (Ang-2) allows the development of an anti-angiogenesis strategy adapted to the profile of the tumor. Oncolytic virotherapy uses the natural propensity of viruses to colonize tumors to treat cancer. The recombinant vaccinia virus GLV-1h68 was shown to infect, colonize and lyse several tumor types. Its descendant GLV-1h108, expressing an anti-VEGF antibody, was proved in previous studies to inhibit efficiently tumor induced angiogenesis. Additional VACVs expressing single chain antibodies (scAb) antibodies against PlGF and Ang-2 alone or in combination with anti VEGF scAb were designed. In this study, VACV-mediated anti-angiogenesis treatments have been evaluated in several preclinical tumor models. The efficiency of PlGF blockade, alone or in combination with VEGF, mediated by VACV has been established and confirmed. PlGF inhibition alone or with VEGF reduced tumor burden 5- and 2-folds more efficiently than the control virus, respectively. Ang-2 blockade efficiency for cancer treatment gave controversial results when tested in different laboratories. Here we demonstrated that unlike VEGF, the success of Ang-2 blockade is not only correlated to the strength of the blockade. A particular balance between Ang-2, VEGF and Ang-1 needs to be induced by the treatment to see a regression of the tumor and an improved survival. We saw that Ang-2 inhibition delayed tumor growth up to 3-folds compared to the control virus. These same viruses induced statistically significant tumor growth delays. This study unveiled the need to establish an angiogenic profile of the tumor to be treated as well as the necessity to better understand the synergic effects of VEGF and Ang-2. In addition angiogenesis inhibition by VACV-mediated PlGF and Ang-2 blockade was able to reduce the number of metastases and migrating tumor cells (even more efficiently than VEGF blockade). VACV colonization of tumor cells, in vitro, was limited by VEGF, when the use of the anti-VEGF VACV GLV-1h108 drastically improved the colonization efficiency up to 2-fold, 72 hours post-infection. These in vitro data were confirmed by in vivo analysis of tumors. Fourteen days post-treatment, the anti-VEGF virus GLV-1h108 was colonizing 78.8\% of the tumors when GLV-1h68 colonization rate was 49.6\%. These data confirmed the synergistic effect of VEGF blockade and VACV replication for tumor regression. Three of the tumor cell lines used to assess VACV-mediated angiogenesis inhibition were found, in certain conditions, to mimic either endothelial cell or pericyte functions, and participate directly to the vascular structure. The expression by these tumor cells of e-selectin, p-selectin, ICAM-1 and VCAM-1, normally expressed on activated endothelial cells, corroborates our findings. These proteins play an important role in immune cell recruitment, and there amount vary in presence of VEGF, PlGF and Ang-2, confirming the involvement of angiogenic factors in the immuno-modulatory abilities of tumors. In this study VACV-mediated angiogenesis blockade proved its potential as a therapeutic agent able to treat different tumor types and prevent resistance observed during bevacizumab treatment by acting on different factors. First, the expression of several antibodies by VACV would prevent another angiogenic factor to take over VEGF and stimulate angiogenesis. Then, the ability of VACV to infect tumor cells would prevent them to form blood vessel-like structures to sustain tumor growth, and the localized delivery of the antibody would decrease the risk of adverse effects. Next, the blockade of angiogenic factors would improve VACV replication and decrease the immune-modulatory effect of tumors. Finally the fact that angiogenesis blockade lasts until total regression of the tumor would prevent the recovery of the tumor-associated vasculature and the relapse of patients.}, subject = {Vaccinia-Virus}, language = {en} } @phdthesis{Graver2015, author = {Graver, Shannon}, title = {Molecular and cellular cross talk between angiogenic, immune and DNA mismatch repair pathways}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108302}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {VEGF is a main driver of tumor angiogenesis, playing an important role not only in the formation of new blood vessels, but also acts as a factor for cell migration, proliferation, survival and apoptosis. Angiogenesis is a universal function shared by most solid tumors and its inhibition was thought to have the potential to work across a broad patient population. Clinical evidence has shown that inhibiting pathological angiogenesis only works in a subset of patients and the identification of those patients is an important step towards personalized cancer care. The first approved antiangiogenic therapy was bevacizumab (Avastin®), a monoclonal antibody targeting VEGF in solid tumors including CRC, BC, NSCLC, RCC and others. In addition to endothelial cells, VEGF receptors are present on a number of different cell types including tumor cells, monocytes and macrophages. The work presented in this thesis looked at the in vitro cellular changes in tumor cells and leukocytes in response to the inhibition of VEGF signaling with the use of bevacizumab. In the initial experiments, VEGF was induced by hypoxia in tumor cells to evaluate changes in survival, proliferation, migration and changes in gene or protein expression. There was a minimal direct response of VEGF inhibition in tumor cells that could be attributed to bevacizumab treatment, with minor variations in some of the cell lines screened but no uniform or specific response noted. MMR deficiency often results in microsatellite instability (MSI) in tumors, as opposed to microsatellite stable (MSS) tumors, and accounts for up to 15\% of colorectal carcinomas (CRCs). It has been suggested in clinical data that MMR deficient tumors responded better to bevacizumab regimens, therefore further research used isogenic paired CRC tumor cell lines (MMR deficient and proficient). Furthermore, a DNA damaging agent was added to the treatment regimen, the topoisomerase inhibitor SN-38 (the active metabolite of irinotecan). Inhibiting VEGF using bevacizumab significantly inhibited the ability of MMR deficient tumor cells to form anchor dependent colonies, however conversely, bevacizumab treatment before damaging cells with SN-38, showed a significant increase in colony numbers. Moreover, VEGF inhibition by bevacizumab pretreatment also significantly increased the mutation fraction in MMR deficient cells as measured by transiently transfecting a dinucleotide repeat construct, suggesting VEGF signaling may have an intrinsic role in MMR deficient cells. A number of pathways were analyzed in addition to changes in gene expression profiles resulting in the identification of JNK as a possible VEGF targeted pathway. JUN expression was also reduced in these conditions reinforcing this hypothesis, however the intricate molecular mechanisms remain to be elucidated. In order to remain focused on the clinical application of the findings, it was noted that some cytokines were differentially regulated by bevacizumab between MMR proficient and deficient cells. Treatment regimens employed in vitro attempted to mimic the clinical setting by inducing DNA damage, then allowing cells to recover with or without VEGF using bevacizumab treatment. Inflammatory cytokines, CCL7 and CCL8, were found to have higher expression in the MMR deficient cell line with bevacizumab after DNA damage, therefore the cross talk via tumor derived factors to myeloid cells was analyzed. Gene expression changes in monocytes induced by tumor conditioned media showed CCL18 to be a bevacizumab regulated gene by MMR deficient cells and less so in MMR proficient cells. CCL18 has been described as a prognostic marker in gastric, colorectal and ovarian cancers, however the significance is dependent on tumor type. CCL18 primarily exerts its function on the adaptive immune system to trigger a TH2 response in T cells, but is also described to increase non-specific phagocytosis. The results of this study did show an increase in the phagocytic activity of macrophages in the presence of bevacizumab that was significantly more apparent in MMR deficient cells. Furthermore, after DNA damage MMR deficient cells treated with bevacizumab released a cytokine mix that induced monocyte migration in a bevacizumab dependent manner, showing a functional response with the combination of MMR deficiency and bevacizumab. In summary, the work in this thesis has shown evidence of immune cell modulation that is specific to MMR deficient tumor cells that may translate into a marker for the administration of bevacizumab in a clinical setting. VEGF ist ein zentraler Regulator der Tumor-Angiogenese, und spielt eine wichtige Rolle nicht nur in der Bildung von neuen Blutgef{\"a}ßen, sondern ist auch f{\"u}r die Migration, Proliferation, das {\"U}berleben und Apoptose von Tumorzellen essentiell. Angiogenese ist eine der universellen Funktionen, welche das Wachstum der meisten soliden Tumoren charakterisiert. Eine der klassischen therapeutischen Ideen wurde auf der Basis entwickelt, dass die spezifische Hemmung der Angiogenese das Potenzial hat in einer breiten Patientenpopulation einen klinischen Effekt zu zeigen. Die klinische Erfahrung und Anwendung hat jedoch gezeigt, dass die Hemmung der pathologischen Angiogenese nur in einem Teil der Patienten einen therapeutischen Nutzen aufweist. Somit stellt die Identifikation derjenigen Patienten, welche von der anti-angiogenen Therapie profitieren, einen wichtiger Schritt zur personalisierten Krebsbehandlung dar. Die erste zugelassene antiangiogene Therapie war Bevacizumab (Avastin®), ein monoklonaler Antik{\"o}rper gegen VEGF, welcher unter anderem in soliden Tumoren wie CRC, BC, nicht-kleinzelligem Lungenkrebs (NSCLC) und dem Nierenzellkarzinom angewandt wird. VEGF-Rezeptoren befinden sich nicht nur auf Endothelzellen, sondern sind auch auf einer Anzahl von verschiedenen Zelltypen, einschließlich Tumorzellen, Monozyten und Makrophagen nachweisbar. Die in dieser Arbeit vorgestellten Ergebnisse befassen sich mit den zellul{\"a}ren Ver{\"a}nderungen an Tumorzellen und Leukozyten als Reaktion auf die Hemmung der VEGF-Signalkaskade durch Bevacizumab in-vitro. In den Initialen Experimenten wurde VEGF durch Hypoxie in Tumorzellen induziert und Ver{\"a}nderungen der {\"U}berlebensrate, der Proliferation, Migration als auch in der Gen- oder Protein-Expression gemessen. Es konnte eine minimale direkte Reaktion der VEGF-Hemmung auf Tumorzellen beobachtet werden, welche auf die Bevacizumab Behandlung zur{\"u}ckgef{\"u}hrt werden k{\"o}nnte. Es zeigten sich aber auch geringf{\"u}gige Abweichungen in einigen der verwendeten Zellinien, die keine einheitliche Interpretation erlauben oder auf eine uniformelle Reaktion hinweisen w{\"u}rden. Das ph{\"a}notypische Korrelat einer „Mismatch" Reparatur (MMR)-Defizienz ist die Mikrosatelliteninstabilit{\"a}t im Gegensatz zu mikrosatellitenstabilen Tumoren und findet sich bei bis zu 15\% der kolorektalen Karzinomen (CRC) wieder. Klinischen Daten deuten daraufhin, dass Bevacizumab besser in MMR-defizienten Tumoren wirkt. Daher wurden die weiteren Untersuchungen in gepaarten MMR stabilen und MMR instabilen CRC-Tumorzelllinien (MMR defizient und kompetent) durchgef{\"u}hrt. Weiterhin wurde ein DNA-sch{\"a}digendes Agens, SN-38, ein Topoisomerase-Inhibitor (der aktive Metabolit von Irinotecan) dem Behandlungsschema zugef{\"u}gt. Es zeigte sich, dass die Hemmung von VEGF mittels Bevacizumab die F{\"a}higkeit der MMR defizienten Tumorzellen Kolonien zu bilden signifikant inhibiert. Im Gegensatz dazu, hatte die Behandlung von Bevacizumab vor der Zugabe des DNA sch{\"a}digenden Agens zu einer vermehrten Kolonienzahl gef{\"u}hrt. Außerdem erh{\"o}hte die Vorbehandlung mit Bevacizumab deutlich die Mutationsrate in MMR-defizienten Zellen, was durch die transiente Transfektion eines Dinukleotid-Repeat-Konstrukts nachgewiesen werden konnte. Dies deutete darauf hin, dass VEGF eine intrinsische Rolle in der Signalkaskade des MMR-Systems haben k{\"o}nnte. Deshalb wurde eine Anzahl von Signalalkaskaden zus{\"a}tzlich zu Ver{\"a}nderungen von Genexpressionsprofilen untersucht und JNK als m{\"o}gliche Verbindungsstelle der beiden Signalkaskaden, VEGF und MMR, identifiziert. Diese Hypothese wurde zus{\"a}tzlich unterst{\"u}tzt durch die Tatsache, dass die JUN Expression unter diesen experimentellen Bedingungen reduziert war. Die Aufkl{\"a}rung der komplexen molekularen Mechanismen der potentiellen Interaktion bleibt zuk{\"u}nftigen Untersuchungen vorbehalten. In Hinblick auf die klinische Konsequenz der erhaltenen Ergebnisse war es auff{\"a}llig, dass einige Zytokine durch Bevacizumab in den MMR defizienten Zellen im Gegensatz zu den MMR kompetenten Zellen unterschiedlich reguliert wurden. Die in-vitro verwendeten Behandlungsschemata waren den klinisch zur Anwendung kommenden Protokollen nachempfunden. Zuerst wurde ein DNA-Schaden gesetzt, und den Zellen erm{\"o}glicht, sich mit oder ohne Bevacizumab zu erholen. Es konnte gezeigt werden, dass die inflammatorischen Zytokine CCL7 und CCL8 eine h{\"o}here Expression in der MMR-defiziente Zelllinie in Kombination mit Bevacizumab aufweisen. Daher wurde ein m{\"o}glicher Crosstalk zwischen von Tumorzellen sezernierten Faktoren und myeloischen Zellen weiter verfolgt. Ver{\"a}nderungen der Genexpression in Monozyten durch Tumorzell- konditionierte Medien zeigte CCL18 als ein Bevacizumab reguliertes Gen in MMR-defizienten Zellen, aber nicht in MMR kompetenten Zellen. CCL18 {\"u}bt seine Funktion prim{\"a}r im adaptiven Immunsystems aus um eine TH2-Antwort in T-Zellen auszul{\"o}sen Ausserdem wird eine Erh{\"o}hung der nicht-spezifische Phagozytose als weitere Funktion beschrieben. CCL18 wurde bereits als prognostischer Marker in Magen-, Dickdarm- und Eierstockkrebsarten beschrieben; die klinische Bedeutung ist jedoch abh{\"a}ngig von Tumortyp. Die Ergebnisse dieser Arbeit zeigen, dass eine Erh{\"o}hung der phagozytischen Aktivit{\"a}t von Makrophagen in Gegenwart von Bevacizumab wesentlich deutlicher in MMR-defizienten Zellen ausgepr{\"a}gt war. Weiterhin wurde gefunden, dass nach DNA-Sch{\"a}digung in Bevacizumab behandelten MMR-defizienten Zellen Zytokine freigesetzt werden, welche eine Monozytenmigration in einer Bevacizumab-abh{\"a}ngigen Weise induzieren. Dies weist auf eine funktionelle Interaktion von MMR-Defizienz und Bevacizumab hin. Zus{\"a}tzlich zeigen die Ergebnisse dieser Arbeit eine Immunzellmodulation, die spezifisch f{\"u}r Mismatch-Reparatur defiziente Tumorzellen ist und in der klinischen Praxis als Marker f{\"u}r die Verabreichung von Bevacizumab verwendet werden k{\"o}nnte.}, subject = {Vascular endothelial Growth Factor}, language = {en} } @phdthesis{Scheller2012, author = {Scheller, Katharina}, title = {Charakterisierung und Anwendung von humanen, prim{\"a}ren mikrovaskul{\"a}ren Endothelzellen mit erweiterter Proliferationsf{\"a}higkeit}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76577}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Das Arbeitsgebiet Tissue Engineering befasst sich mit der Kl{\"a}rung der Mechanismen, die der Funktionen verschiedener Gewebearten zu Grunde liegen sowie mit der Entwicklung alternativer Strategien zur Behandlung von Organversagen bzw. Organverlusten. Einer der kritischsten Punkte im Tissue Engineering ist die ausreichende Versorgung der Zellen mit N{\"a}hrstoffen und Sauerstoff. Bioartifizielle Gewebe mit einer Dicke von bis zu 200 µm k{\"o}nnen mittels Diffusion ausreichend versorgt werden. F{\"u}r dickere Transplantate ist die Versorgung der Zellen alleine durch Diffusion jedoch nicht gegeben. Hierf{\"u}r m{\"u}ssen Mechanismen und Strategien zur Pr{\"a}vaskularisierung der artifiziellen Gewebekonstrukte entwickelt werden, damit die N{\"a}hrstoff- und Sauerstoffversorgung aller Zellen, auch im Inneren des Transplantates, von Anfang an gew{\"a}hrleistet ist. Eine wichtige Rolle bei der Pr{\"a}vaskularisierung spielt die Angiogenese. Dabei ist die Wahl einer geeigneten Zellquelle entscheidend, da die Zellen die Basis f{\"u}r die Angiogenese darstellen. Mikrovaskul{\"a}re Endothelzellen (mvEZ) sind maßgeblich an der Angiogenese beteiligt. Das Problem bei der Verwendung von humanen prim{\"a}ren mvEZ ist ihre geringe Verf{\"u}gbarkeit, ihre limitierte Proliferationskapazit{\"a}t und der schnelle Verlust ihrer typischen Endothelzellmarker in-vitro. Der Aufbau standardisierter in-vitro Testsysteme ist durch die geringe Zellausbeute auch nicht m{\"o}glich. Die upcyte® Technologie bietet hierf{\"u}r einen L{\"o}sungsansatz. In der vorliegenden Arbeit konnten upcyte® mvEZ als Alternative zu prim{\"a}ren mvEZ generiert werden. Es konnte gezeigt werden, dass die Zellen eine erweiterte Proliferationsf{\"a}higkeit aufweisen und im Vergleich zu prim{\"a}ren mvEZ durchschnittlich 15 zus{\"a}tzliche Populationsverdopplungen leisten k{\"o}nnen. Dadurch ist es m{\"o}glich 3x104-fach mehr upcyte® mvEZ eines Spenders zu generieren verglichen mit den korrespondierenden Prim{\"a}rzellen. Die gute und ausreichende Verf{\"u}gbarkeit der Zellen macht sie interessant f{\"u}r die Standardisierung von in-vitro Testsystemen, ebenso k{\"o}nnen die Zellen zur Pr{\"a}vaskularisierung von Transplantaten eingesetzt werden. Upcyte® mvEZ zeigen zahlreiche Prim{\"a}rzellmerkmale, die in der Literatur beschrieben sind. Im konfluenten Zustand zeigen sie die f{\"u}r prim{\"a}re mvEZ spezifische pflastersteinartige Morphologie. Dar{\"u}ber hinaus exprimieren upcyte® mvEZ typische Endothelzellmarker wie CD31, vWF, eNOS, CD105, CD146 und VEGFR-2 vergleichbar zu prim{\"a}ren mvEZ. Eine weitere endothelzellspezifische Eigenschaft ist die Bindung von Ulex europaeus agglutinin I Lektin an die alpha-L-Fucose enthaltene Kohlenhydratstrukturen von mvEZs. Auch hier wurden upcyte® Zellen mit prim{\"a}ren mvEZ verglichen und zeigten die hierf{\"u}r charkteristischen Strukturen. Zus{\"a}tzlich zu Morphologie, Proliferationskapazit{\"a}t und endothelzellspezifischen Markern, zeigen upcyte® mvEZ auch mehrere funktionelle Eigenschaften, welche in prim{\"a}ren mvEZ beobachtet werden k{\"o}nnen, wie beispielsweise die Aufnahme von Dil-markiertem acetyliertem Low Density Lipoprotein (Dil-Ac-LDL) oder die F{\"a}higkeit den Prozess der Angiognese zu unterst{\"u}tzen. Zus{\"a}tzlich bilden Sph{\"a}roide aus upcyte® mvEZ dreidimensionale lumin{\"a}re Zellformationen in einer Kollagenmatrix aus. Diese Charakteristika zeigen den quasi-prim{\"a}ren Ph{\"a}notyp der upcyte® mvEZs. Upcyte® mvEZ stellen dar{\"u}ber hinaus eine neuartige m{\"o}gliche Zellquelle f{\"u}r die Generierung pr{\"a}vaskularisierter Tr{\"a}germaterialien im Tissue Engineering dar. In der vorliegenden Arbeit konnte die Wiederbesiedlung der biologisch vaskularisierte Matrix (BioVaSc) mit upcyte® mvEZ vergleichbar zu prim{\"a}ren mvEZ gezeigt werden. Der Einsatz von upcyte® mvEZ in der BioVaSc stellt einen neuen, vielversprechenden Ansatz zur Herstellung eines vaskularisierten Modells f{\"u}r Gewebekonstrukte dar, wie beispielsweise einem Leberkonstrukt. Zusammenfassend konnte in der vorliegenden Arbeit gezeigt werden, dass upcyte® mvEZ vergleichbar zu prim{\"a}ren mvEZs sind und somit eine geeignete Alternative f{\"u}r die Generierung pr{\"a}vaskulierter Tr{\"a}germaterialien und Aufbau von in-vitro Testsystemen darstellen. Dar{\"u}ber hinaus wurde ein neues, innovatives System f{\"u}r die Generierung einer perfundierten, mit Endothelzellen wiederbesiedelten Matrix f{\"u}r k{\"u}nstliches Gewebe in-vitro entwickelt.}, subject = {Tissue Engineering}, language = {de} }