@phdthesis{Harth2010, author = {Harth, Stefan}, title = {Molecular Recognition in BMP Ligand-Receptor Interactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52797}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Bone Morphogenetic Proteins (BMPs) are secreted multifunctional signaling proteins that play an important role during development, maintenance and regeneration of tissues and organs in almost all vertebrates and invertebrates. BMPs transmit their signals by binding to two types of serine-/threonine-kinase receptors. BMPs bind first to their high affinity receptor, thereby recruiting their low affinity receptor into the complex. This receptor assembly starts a Smad (Small mothers against decapentaplegic) protein signaling cascade which regulates the transcription of responsive genes. Up to date, only seven type I and five type II receptors are known for more than 30 ligands. Therefore, many BMP ligands can recruit more than one receptor subtype. Vice versa, receptors can bind to several ligands, indicating a highly promiscuous ligand-receptor interaction. This raises the following questions: (i) How are BMPs able to induce ligand-specific signals, despite forming complexes with identical receptor composition and (ii) how are they able to recognize and bind various binding partners in a highly specific manner. From the ligand's point of view, heterodimeric BMPs are valuable tools for studying the interplay between different sets of receptors, thereby providing new insights into how the various BMP signals can be generated. This study describes the expression and purification of the heterodimers BMP-2/6 and -2/7 from E.coli cells. BIAcore interaction studies and various in vitro cell activity assays revealed that the generated heterodimers are biologically active. Furthermore, BMP-2/6 and -2/7 exhibit a higher biological activity in most of the cell assays compared to their homodimeric counterparts. In addition, the BMP type I receptor BMPR-IA is involved in heterodimeric BMP signaling. However, the usage of other type I receptor subtypes (e.g. ActR-I) building a heteromeric ligand-receptor type I complex as indicated in previous works could not be determined conclusively. Furthermore, BMP heterodimers seem to require only one type I receptor for signaling. From the receptors' point of view, the BMP type I receptor BMPR-IA is a prime example for its promiscuous binding to different BMP ligands. The extracellular binding interface of BMPR-IA is mainly unfolded in its unbound form, requiring a large induced fit to adopt the conformation when bound to its ligand BMP-2. In order to unravel whether the binding promiscuity of BMPR-IA is linked to structural plasticity of its binding interface, the interaction of BMPR-IA bound to an antibody Fab fragment was investigated. The Fab fragment was selected because of its ability to recognize the BMP-2 binding epitope on BMPR-IA, thus neutralizing the BMP-2 mediated receptor activation. This study describes the crystal structure of the complex of the extracellular domain of BMPR-IA bound to the antibody Fab fragment AbyD1556. The crystal structure revealed that the contact surface of BMPR-IA overlaps extensively with the contact surface of BMPR-IA for BMP-2 interaction. Although the contact epitopes of BMPR-IA to both binding partners coincide, the three-dimensional structures of BMPR-IA in both complexes differ significantly. In contrast to the structural differences, alanine-scanning mutagenesis of BMPR-IA showed that the functional determinants for binding to both the antibody and BMP-2 are almost identical. Comparing the structures of BMPR-IA bound to BMP-2 or to the Fab AbyD1556 with the structure of unbound BMPR-IA revealed that binding of BMPR-IA to its interaction partners follows a selection fit mechanism, possibly indicating that the ligand promiscuity of BMPR-IA is inherently encoded by structural adaptability.}, subject = {Knochen-Morphogenese-Proteine}, language = {en} } @phdthesis{Heinecke2010, author = {Heinecke, Kai}, title = {Die Dynamik der prim{\"a}ren Erkennungsschritte von BMP-Rezeptoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49257}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Bone Morphogenetic Proteins (BMPs) bilden zusammen mit den Activinen, Growth and Differentiation Factors (GDFs) und Transforming Growth Factor \&\#946; (TGF-\&\#946;) die Transforming Growth Factor \&\#946;-Superfamilie von sekretierten Signalproteinen. Sie spielen eine wichtige Rolle in der Entwicklung, Erhaltung und Regeneration von Geweben und Organen. Die Signalvermittlung dieser Proteine erfolgt durch die Bindung von zwei verschiedenen Typen von Serin-/Threonin-Kinaserezeptoren, die als Typ-I- und Typ-II-Rezeptoren bezeichnet werden. Im ersten Schritt erfolgt die Bindung an den hochaffinen Rezeptor (im Fall von BMP-2 der Typ-I-Rezeptor), im n{\"a}chsten Schritt wird der niederaffine Rezeptor in den Komplex rekrutiert. Bis heute sind lediglich sieben Typ-I- und f{\"u}nf Typ-II-Rezeptoren bekannt, was auf eine Promiskuit{\"a}t in der Liganden-Rezeptor-Interaktion schließen l{\"a}sst. Die Architektur beider Rezeptorsubtypen ist dabei relativ {\"a}hnlich. Beide bestehen aus einer ligandenbindenden extrazellul{\"a}ren Dom{\"a}ne, einer Transmembrandom{\"a}ne sowie einer intrazellul{\"a}ren Kinasedom{\"a}ne. Eine nacheinander ablaufende Transphosphorylierung der intrazellul{\"a}ren Dom{\"a}nen f{\"u}hrt zu einer Phosphorylierung von SMAD-Proteinen, die dann als nachgeschaltete Vermittler fungieren und die Transkription regulierter Gene ausl{\"o}sen. Im Hauptteil dieser Arbeit wurden die initialen Schritte der Rezeptorkomplexformierung sowie die Mobilit{\"a}t der Rezeptoren mit Hilfe von fluoreszenzmikroskopischen Methoden untersucht. Dabei konnte festgestellt werden, dass f{\"u}r die Bildung eines Signalkomplexes eine bestimmte Schwellenkonzentration des Liganden n{\"o}tig ist und dass der Mechanismus nach einem Alles-oder-Nichts-Prinzip wie ein Schalter funktioniert. Außerdem konnten Unterschiede in der Nutzung der gleichen Rezeptoren durch verschiedene Liganden festgestellt werden. Die anderen Teile der Arbeit befassen sich mit der Funktionalit{\"a}t der verschiedenen Rezeptordom{\"a}nen in der Signal{\"u}bermittlung, der Analyse von hoch- und niederaffinen Ligandenbindestellen auf ganzen Zellen sowie dem Einfluss des SMAD- und des MAPK-Signalwegs auf die Induktion der Alkalischen Phosphatase. Dabei konnte gezeigt werden, dass die Art der SMAD-Phosphorylierung allein vom Typ der Kinasedom{\"a}ne abh{\"a}ngig ist, dass auf einer Zelle verschiedene Rezeptorpopulationen existieren, welche von unterschiedlichen Ligandenkonzentrationen angesprochen werden, und dass die Induktion der Alkalischen Phosphatase stark vom zeitlichen Verlauf der SMAD- und MAPK-Aktivierung abh{\"a}ngig ist.}, subject = {Knochen-Morphogenese-Proteine}, language = {de} } @phdthesis{Ulbrich2010, author = {Ulbrich, Jannes}, title = {Integrierung und biochemische Charakterisierung ektoper BMP Rezeptoren in Zellmembranen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {BMPs vermitteln ihre zellul{\"a}ren Effekte durch Rekrutierung und Aktivierung von zwei Typen spezifischer, membranst{\"a}ndiger Rezeptoren. Die genauen Mechanismen der Rezeptorakivierung und die Komposition eines funktionellen, signalvermittelnden Komplexes auf der Zelloberfl{\"a}che sind in den letzten Jahren genau untersucht worden. Die dimere Natur aller BMPs, die Promiskuitivit{\"a}t der BMPs sowie der entsprechenden Rezeptoren und die unterschiedlichen Rezeptorkonformationen (PFC, BISC) erschweren jedoch die experimentelle Zug{\"a}nglichkeit dieser Proteinfamilie. Um den Einfluss der Membranverankerung der Rezeptoren auf deren Affinit{\"a}t zu einzelnen Liganden zu untersuchen, wurden verschiedene Methoden evaluiert, die eine quantitative Kopplung an Plasmamembranen erm{\"o}glichten. Die BMP Rezeptorektodom{\"a}nen wurden u.a. mittels einer lysin-spezifischen Kopplung lipidiert, oder aber als His6-Ektodom{\"a}nen an membranintegrierte Chelatlipide gekoppelt.}, subject = {Knochen-Morphogenese-Proteine}, language = {de} }