@phdthesis{Dejure2018, author = {Dejure, Francesca Romana}, title = {Investigation of the role of MYC as a stress responsive protein}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158587}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The transcription factor MYC is deregulated in over 70\% of all human tumors and, in its oncogenic form, plays a major role in the cancer metabolic reprogramming, promoting the uptake of nutrients in order to sustain the biosynthetic needs of cancer cells. The research presented in this work aimed to understand if MYC itself is regulated by nutrient availability, focusing on the two major fuels of cancer cells: glucose and glutamine. Initial observations showed that endogenous MYC protein levels strongly depend on the availability of glutamine, but not of glucose. Subsequent analysis highlighted that the mechanism which accounts for the glutamine-mediated regulation of MYC is dependent on the 3´-untranslated region (3´-UTR) of MYC. Enhanced glutamine utilization by tumors has been shown to be directly linked to MYC oncogenic activity and MYC-dependent apoptosis has been observed under glutamine starvation. Such effect has been described in experimental systems which are mainly based on the use of MYC transgenes that do not contain the 3´-UTR. It was observed in the present study that cells are able to survive under glutamine starvation, which leads to cell cycle arrest and not apoptosis, as previously reported. However, enforced expression of a MYC transgene, which lacks the 3´-UTR, strongly increases the percentage of apoptotic cells upon starvation. Evaluation of glutamine-derived metabolites allowed to identify adenosine nucleotides as the specific stimulus responsible for the glutamine-mediated regulation of MYC, in a 3´-UTR-dependent way. Finally, glutamine-dependent MYC-mediated effects on RNA Polymerase II (RNAPII) function were evaluated, since MYC is involved in different steps of global transcriptional regulation. A global loss of RNAPII recruitment at the transcriptional start site results upon glutamine withdrawal. Such effect is overcome by enforced MYC expression under the same condition. This study shows that the 3´UTR of MYC acts as metabolic sensor and that MYC globally regulates the RNAPII function according to the availability of glutamine. The observations presented in this work underline the importance of considering stress-induced mechanisms impinging on the 3´UTR of MYC.}, subject = {Myc}, language = {en} } @phdthesis{Gnamlin2015, author = {Gnamlin, Prisca}, title = {Use of Tumor Vasculature for Successful Treatment of Carcinomas by Oncolytic Vaccinia Virus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119019}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Tumor-induced angiogenesis is of major interest for oncology research. Vascular endothelial growth factor (VEGF) is the most potent angiogenic factor characterized so far. VEGF blockade was shown to be sufficient for angiogenesis inhibition and subsequent tumor regression in several preclinical tumor models. Bevacizumab was the first treatment targeting specifically tumor-induced angiogenesis through VEGF blockade to be approved by the Food and Drugs Administration (FDA) for cancer treatment. However, after very promising results in preclinical evaluations, VEGF blockade did not show the expected success in patients. Some tumors became resistant to VEGF blockade. Several factors have been accounted responsible, the over-expression of other angiogenic factors, the noxious influence of VEFG blockade on normal tissues, the selection of hypoxia resistant neoplastic cells, the recruitment of hematopoietic progenitor cells and finally the transient nature of angiogenesis inhibition by VEGF blockade. The development of blocking agents against other angiogenic factors like placental growth factor (PlGF) and Angiopoietin-2 (Ang-2) allows the development of an anti-angiogenesis strategy adapted to the profile of the tumor. Oncolytic virotherapy uses the natural propensity of viruses to colonize tumors to treat cancer. The recombinant vaccinia virus GLV-1h68 was shown to infect, colonize and lyse several tumor types. Its descendant GLV-1h108, expressing an anti-VEGF antibody, was proved in previous studies to inhibit efficiently tumor induced angiogenesis. Additional VACVs expressing single chain antibodies (scAb) antibodies against PlGF and Ang-2 alone or in combination with anti VEGF scAb were designed. In this study, VACV-mediated anti-angiogenesis treatments have been evaluated in several preclinical tumor models. The efficiency of PlGF blockade, alone or in combination with VEGF, mediated by VACV has been established and confirmed. PlGF inhibition alone or with VEGF reduced tumor burden 5- and 2-folds more efficiently than the control virus, respectively. Ang-2 blockade efficiency for cancer treatment gave controversial results when tested in different laboratories. Here we demonstrated that unlike VEGF, the success of Ang-2 blockade is not only correlated to the strength of the blockade. A particular balance between Ang-2, VEGF and Ang-1 needs to be induced by the treatment to see a regression of the tumor and an improved survival. We saw that Ang-2 inhibition delayed tumor growth up to 3-folds compared to the control virus. These same viruses induced statistically significant tumor growth delays. This study unveiled the need to establish an angiogenic profile of the tumor to be treated as well as the necessity to better understand the synergic effects of VEGF and Ang-2. In addition angiogenesis inhibition by VACV-mediated PlGF and Ang-2 blockade was able to reduce the number of metastases and migrating tumor cells (even more efficiently than VEGF blockade). VACV colonization of tumor cells, in vitro, was limited by VEGF, when the use of the anti-VEGF VACV GLV-1h108 drastically improved the colonization efficiency up to 2-fold, 72 hours post-infection. These in vitro data were confirmed by in vivo analysis of tumors. Fourteen days post-treatment, the anti-VEGF virus GLV-1h108 was colonizing 78.8\% of the tumors when GLV-1h68 colonization rate was 49.6\%. These data confirmed the synergistic effect of VEGF blockade and VACV replication for tumor regression. Three of the tumor cell lines used to assess VACV-mediated angiogenesis inhibition were found, in certain conditions, to mimic either endothelial cell or pericyte functions, and participate directly to the vascular structure. The expression by these tumor cells of e-selectin, p-selectin, ICAM-1 and VCAM-1, normally expressed on activated endothelial cells, corroborates our findings. These proteins play an important role in immune cell recruitment, and there amount vary in presence of VEGF, PlGF and Ang-2, confirming the involvement of angiogenic factors in the immuno-modulatory abilities of tumors. In this study VACV-mediated angiogenesis blockade proved its potential as a therapeutic agent able to treat different tumor types and prevent resistance observed during bevacizumab treatment by acting on different factors. First, the expression of several antibodies by VACV would prevent another angiogenic factor to take over VEGF and stimulate angiogenesis. Then, the ability of VACV to infect tumor cells would prevent them to form blood vessel-like structures to sustain tumor growth, and the localized delivery of the antibody would decrease the risk of adverse effects. Next, the blockade of angiogenic factors would improve VACV replication and decrease the immune-modulatory effect of tumors. Finally the fact that angiogenesis blockade lasts until total regression of the tumor would prevent the recovery of the tumor-associated vasculature and the relapse of patients.}, subject = {Vaccinia-Virus}, language = {en} } @phdthesis{Grebinyk2021, author = {Grebinyk, Anna}, title = {Synergistic Chemo- and Photodynamic Treatment of Cancer Cells with C\(_{60}\) Fullerene Nanocomplexes}, doi = {10.25972/OPUS-22207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222075}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Recent progress in nanotechnology has attracted interest to a biomedical application of the carbon nanoparticle C60 fullerene (C60) due to its unique structure and versatile biological activity. In the current study the dual functionality of C60 as a photosensitizer and a drug nanocarrier was exploited to improve the efficiency of chemotherapeutic drugs towards human leukemic cells. Pristine C60 demonstrated time-dependent accumulation with predominant mitochondrial localization in leukemic cells. C60's effects on leukemic cells irradiated with high power single chip LEDs of different wavelengths were assessed to find out the most effective photoexcitation conditions. A C60-based noncovalent nanosized system as a carrier for an optimized drug delivery to the cells was evaluated in accordance to its physicochemical properties and toxic effects. Finally, nanomolar amounts of C60-drug nanocomplexes in 1:1 and 2:1 molar ratios were explored to improve the efficiency of cell treatment, complementing it with photodynamic approach. A proposed treatment strategy was developed for C60 nanocomplexes with the common chemotherapeutic drug Doxorubicin, whose intracellular accumulation and localization, cytotoxicity and mechanism of action were investigated. The developed strategy was revealed to be transferable to an alternative potent anticancer drug - the herbal alkaloid Berberine. Hereafter, a strong synergy of treatments arising from the combination of C60-mediated drug delivery and C60 photoexcitation was revealed. Presented data indicate that a combination of chemo- and photodynamic treatments with C60-drug nanoformulations could provide a promising synergetic approach for cancer treatment.}, subject = {cancer}, language = {en} } @phdthesis{Hart2004, author = {Hart, Stefan}, title = {Characterisation of the molecular mechanisms of EGFR signal transactivation in human cancer}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10067}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {In a variety of established tumour cell lines, but also in primary mammary epithelial cells metalloprotease-dependent transactivation of the EGFR, and EGFR characteristic downstream signalling events were observed in response to stimulation with physiological concentrations of GPCR agonists such as the mitogens LPA and S1P as well as therapeutically relevant concentrations of cannabinoids. Moreover, this study reveals ADAM17 and HB-EGF as the main effectors of this mechanism in most of the cancer cell lines investigated. However, depending on the cellular context and GPCR agonist, various different members of the ADAM family are selectively recruited for specific ectodomain shedding of proAR and/or proHB-EGF and subsequent EGFR activation. Furthermore, biological responses induced by LPA or S1P such as migration in breast cancer and HNSCC cells, depend on ADAM17 and proHB-EGF/proAR function, respectively, suggesting that highly abundant GPCR ligands may play a role in tumour development and progression. Moreover, EGFR signal transactivation could be identified as the mechanistic link between cannabinoid receptors and the activation of mitogen activated protein kinases (MAPK) ERK1/2 as well as pro-survival Akt/PKB signalling. Depending on the cellular context, cannabinoid-induced signal cross-communication was mediated by shedding of proAmphiregulin and/or proHB-EGF by ADAM17. Most importantly, our data show that concentrations of THC comparable to those detected in the serum of patients after THC administration accelerate proliferation of cancer cells instead of apoptosis and thereby may contribute to cancer progression in patients.}, subject = {Epidermaler Wachstumsfaktor-Rezeptor}, language = {en} } @phdthesis{Hess2013, author = {Heß, Michael}, title = {Vaccinia virus-encoded bacterial beta-glucuronidase as a diagnostic biomarker for oncolytic virotherapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86789}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Oncolytic virotherapy represents a promising approach to revolutionize cancer therapy. Several preclinical and clinical trials display the safety of oncolytic viruses as wells as their efficiency against solid tumors. The development of complementary diagnosis and monitoring concepts as well as the optimization of anti-tumor activity are key points of current virotherapy research. Within the framework of this thesis, the diagnostic and therapeutic prospects of beta-glucuronidase expressed by the oncolytic vaccinia virus strain GLV-1h68 were evaluated. In this regard, a beta-glucuronidase-based, therapy-accompanying biomarker test was established which is currently under clinical validation. By using fluorescent substrates, the activity of virally expressed beta-glucuronidase could be detected and quantified. Thereby conclusions about the replication kinetics of oncolytic viruses in animal models and virus-induced cancer cell lysis could be drawn. These findings finally led to the elaboration and establishment of a versatile biomarker assay which allows statements regarding the replication of oncolytic viruses in mice based on serum samples. Besides the analysis of retrospective conditions, this test is able to serve as therapy-accompanying monitoring tool for virotherapy approaches with beta-glucuronidase-expressing viruses. The newly developed assay also served as complement to routinely used plaque assays as well as reference for virally expressed anti-angiogenic antibodies in additional preclinical studies. Further validation of this biomarker test is currently taking place in the context of clinical trials with GL-ONC1 (clinical grade GLV-1h68) and has already shown promising preliminary results. It was furthermore demonstrated that fluorogenic substrates in combination with beta-glucuronidase expressed by oncolytic viruses facilitated the optical detection of solid tumors in preclinical models. In addition to diagnostic purposes, virus-encoded enzymes could also be combined with prodrugs resulting in an improved therapeutic outcome of oncolytic virotherapy. In further studies, the visualization of virus-induced immune reactions as well as the establishment of innovative concepts to improve the therapeutic outcome of oncolytic virotherapy could be accomplished. In conclusion, the results of this thesis provide crucial findings about the influence of virally expressed beta-glucuronidase on various diagnostic concepts in the context of oncolytic virotherapy. In addition, innovative monitoring and therapeutic strategies could be established. Our preclinical findings have important clinical influence, particularly by the development of a therapy-associated biomarker assay which is currently used in different clinical trials.}, subject = {Vaccinia-Virus}, language = {en} } @phdthesis{Kaymak2019, author = {Kaymak, Irem}, title = {Identification of metabolic liabilities in 3D models of cancer}, doi = {10.25972/OPUS-18154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181544}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Inefficient vascularisation of solid tumours leads to the formation of oxygen and nutrient gradients. In order to mimic this specific feature of the tumour microenvironment, a multicellular tumour spheroid (SPH) culture system was used. These experiments were implemented in p53 isogenic colon cancer cell lines (HCT116 p53 +/+ and HCT116 p53-/-) since Tp53 has important regulatory functions in tumour metabolism. First, the characteristics of the cells cultured as monolayers and as spheroids were investigated by using RNA sequencing and metabolomics to compare gene expression and metabolic features of cells grown in different conditions. This analysis showed that certain features of gene expression found in tumours are also present in spheroids but not in monolayer cultures, including reduced proliferation and induction of hypoxia related genes. Moreover, comparison between the different genotypes revealed that the expression of genes involved in cholesterol homeostasis is induced in p53 deficient cells compared to p53 wild type cells and this difference was only detected in spheroids and tumour samples but not in monolayer cultures. In addition, it was established that loss of p53 leads to the induction of enzymes of the mevalonate pathway via activation of the transcription factor SREBP2, resulting in a metabolic rewiring that supports the generation of ubiquinone (coenzyme Q10). An adequate supply of ubiquinone was essential to support mitochondrial electron transport and pyrimidine biosynthesis in p53 deficient cancer cells under conditions of metabolic stress. Moreover, inhibition of the mevalonate pathway using statins selectively induced oxidative stress and apoptosis in p53 deficient colon cancer cells exposed to oxygen and nutrient deprivation. This was caused by ubiquinone being required for electron transfer by dihydroorotate dehydrogenase, an essential enzyme of the pyrimidine nucleotide biosynthesis pathway. Supplementation with exogenous nucleosides relieved the demand for electron transfer and restored viability of p53 deficient cancer cells under metabolic stress. Moreover, the mevalonate pathway was also essential for the synthesis of ubiquinone for nucleotide biosynthesis to support growth of intestinal tumour organoids. Together, these findings highlight the importance of the mevalonate pathway in cancer cells and provide molecular evidence for an enhanced sensitivity towards the inhibition of mitochondrial electron transfer in tumour-like metabolic environments.}, subject = {Tumor}, language = {en} } @phdthesis{Laisney2010, author = {Laisney, Juliette Agn{\`e}s Genevi{\`e}ve Claire}, title = {Characterisation and regulation of the Egfr/Egfr ligand system in fish models for melanoma}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51369}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Fish of the genus Xiphophorus belong to the oldest animal models in cancer research. The oncogene responsible for the generation of spontaneous aggressive melanoma encodes for a mutated epidermal growth factor receptor (Egfr) and is called xmrk for Xiphophorus melanoma receptor kinase. Xmrk constitutive activation mechanisms and subsequent signaling pathways have already been investigated and charaterized but it is still unknown if Egfr ligands may also play a role in Xmrk-driven melanoma formation. To investigate the potential role of Egfr ligands in Xmrk-driven melanoma, I firstly analyzed the evolution of teleost and tetrapod Egfr/Egfr ligand systems. I especially focused on the analysis on the medaka fish, a closely related species to Xiphophorus, for which the whole genome has been sequenced. I could identify all seven Egfr ligands in medaka and could show that the two teleost-specific Egfr copies of medaka display dissimilar expression patterns in adult tissues together with differential expression of Egfr ligand subsets, arguing for subfunctionalization of receptor functions in this fish. Our phylogenetic and synteny analyses supported the hypothesis that only one gene in the chordate ancestor gave rise to the diversity of Egfr ligands found in vertebrate genomes today. I also could show that the Egfr extracellular subdomains implicated in ligand binding are not evolutionary conserved between tetrapods and teleosts, making the use of heterologous ligands in experiments with fish cells debatable. Despite its well understood and straight-forward process, Xmrk-driven melanomagenesis in Xiphophorus is problematic to further investigate in vivo. Our laboratory recently established a new melanoma animal model by generating transgenic mitf::xmrk medaka fishes, a Xiphophorus closely related species offering many more advantages. These fishes express xmrk under the control of the pigment-cell specific Mitf promoter. During my PhD thesis, I participated in the molecular analysis of the stably transgenic medaka and could show that the Xmrk-induced signaling pathways are similar when comparing Xiphophorus with transgenic mitf::xmrk medaka. These data together with additional RNA expression, protein, and histology analyses showed that Xmrk expression under the control of a pigment cell-specific promoter is sufficient to induce melanoma in the transgenic medaka, which develop very stereotyped tumors, including uveal and extracutaneous melanoma, with early onset during larval stages. To further investigate the potential role of Egfr ligands in Xmrk-driven melanoma, I made use of two model systems. One of them was the above mentioned mitf::xmrk medaka, the other was an in-vitro cell culture system, where the EGF-inducible Xmrk chimera HERmrk is stably expressed in murine melanocytes. Here I could show that HERmrk activation strongly induced expression of amphiregulin (Areg) and heparin-binding EGF-like growth factor (Hbegf) in melanocytes. This regulation was dependent on the MAPK and SRC signaling pathways. Moreover, upregulation of Adam10 and Adam17, the two major sheddases of Egfr ligands, was observed. I also could demonstrate the functionality of the growth factors by invitro analyses. Using the mitf::xmrk medaka model I could also show the upregulation of a subset of ligand genes, namely egf, areg, betacellulin (btc) and epigen (epgn) as well as upregulation of medaka egfrb in tumors from fish with metastatic melanoma. All these results converge to support an Xmrk-induced autocrine Egfr ligand loop. Interestingly, my in-vitro experiments with conditioned supernatant from medaka Egf- and Hbegf-producing cells revealed that not only Xiphophorus Egfrb, but also the pre-activated Xmrk could be further stimulated by the ligands. Altogether, I could show with in-vitro and in-vivo experiments that Xmrk is capable of inducing a functional autocrine Egfr ligand loop. These data confirm the importance of autocrine loops in receptor tyrosine kinase (RTK)-dependent cancer development and show the possibility for a constitutively active RTK to strengthen its oncogenic signaling by ligand binding.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @phdthesis{Robubi2007, author = {Robubi, Armin}, title = {RAF Kinases: Pathway, Modulation and Modeling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26953}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {The Ras/RAF/MEK/ERK cascade is a central cellular signal transduction pathway involved in cell proliferation, differentiation, and survival where RAF kinases are pivotal kinases implicated in cancer. The development of specific irreversible kinase inhibitors is a rewarding but difficult aim. CI-1033 was developed to irreversibly inhibit erbB receptor tyrosine kinases by reacting to the Cys113 residue (p38alpha MAP kinase numbering) of the kinase domain. In this study we tried a similar approach to target the RAF oncoproteins which posses a similar cysteine at position 108 in the hinge region between the small n-lobe and the large c-lobe of the kinase domain. A novel synthetic approach including a lyophilization step allowed us the synthesis of a diphenyl urea compound with an epoxide moiety (compound 1). Compound 1 possessed inhibitory activity in vitro. However our time kinetics experiments and mass spectroscopic studies clearly indicate that compound 1 does not react covalently with the cysteine residue in the hinge region. Moreover, in cell culture experiments, a strong activation of the RAF signaling pathway was observed, an effect which is known from several other RAF kinase inhibitors and is here reported for the first time for a diphenyl urea compound, to which the clinically used unspecific kinase inhibitor BAY 43-9006 (Sorafinib, Nexavar) belongs. Although activation was apparently independent on B- and C-RAF hetero-oligomerization in vitro, in vivo experiments support such a mechanism as the activation did not occur in starved knockout cells lacking either B-RAF or C-RAF. Furthermore, we developed a mathematical model of the Ras/RAF/MEK/ERK cascade demonstrating how stimuli induce different signal patterns and thereby different cellular responses, depending on cell type and the ratio between B-RAF and C-RAF. Based on biochemical data for activation and dephosphorylation, we set up differential equations for a dynamical model of the Ras/RAF/MEK/ERK cascade. We find a different signaling pattern and response result for B-RAF (strong activation, sustained signal) and C-RAF (steep activation, transient signal). We further support the significance of such differential modulatory signaling by showing different RAF isoform expression in various cell lines and experimental testing of the predicted kinase activities in B-RAF, C-RAF as well as mutated versions. Additionally the effect of the tumor suppressor DiRas3 (also known as Noey2 or ARHI) on RAF signaling was studied. I could show that DiRas3 down-regulates the mitogenic pathway by inhibition of MEK, a basis for a refined model of the Ras/RAF/MEK/ERK cascade.}, subject = {Systembiologie}, language = {en} } @phdthesis{Siegl2014, author = {Siegl, Christine}, title = {Degradation of Tumour Suppressor p53 during Chlamydia trachomatis Infections}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108679}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The intracellular pathogen Chlamydia is the causative agent of millions of new infections per year transmitting diseases like trachoma, pelvic inflammatory disease or lymphogranuloma venereum. Undetected or recurrent infections caused by chlamydial persistence are especially likely to provoke severe pathologies. To ensure host cell survival and to facilitate long term infections Chlamydia induces anti-apoptotic pathways, mainly at the level of mitochondria, and restrains activity of pro-apoptotic proteins. Additionally, the pathogen seizes host energy, carbohydrates, amino acids, lipids and nucleotides to facilitate propagation of bacterial progeny and growth of the chlamydial inclusion. At the beginning of this study, Chlamydia-mediated apoptosis resistance to DNA damage induced by the topoisomerase inhibitor etoposide was investigated. In the course of this, a central cellular protein crucial for etoposide-mediated apoptosis, the tumour suppressor p53, was found to be downregulated during Chlamydia infections. Subsequently, different chlamydial strains and serovars were examined and p53 downregulation was ascertained to be a general feature during Chlamydia infections of human cells. Reduction of p53 protein level was established to be mediated by the PI3K-Akt signalling pathway, activation of the E3-ubiquitin ligase HDM2 and final degradation by the proteasome. Additionally, an intriguing discrepancy between infections of human and mouse cells was detected. Both activation of the PI3K-Akt pathway as well as degradation of p53 could not be observed in Chlamydia-infected mouse cells. Recently, production of reactive oxygen species (ROS) and damage to host cell DNA was reported to occur during Chlamydia infection. Thus, degradation of p53 strongly contributes to the anti-apoptotic environment crucial for chlamydial infection. To verify the importance of p53 degradation for chlamydial growth and development, p53 was stabilised and activated by the HDM2-inhibiting drug nutlin-3 and the DNA damage-inducing compound etoposide. Unexpectedly, chlamydial development was severely impaired and inclusion formation was defective. Completion of the chlamydial developmental cycle was prevented resulting in loss of infectivity. Intriguingly, removal of the p53 activating stimulus allowed formation of the bacterial inclusion and recovery of infectivity. A similar observation of growth recovery was made in infected cell lines deficient for p53. As bacterial growth and inclusion formation was strongly delayed in the presence of activated p53, p53-mediated inhibitory regulation of cellular metabolism was suspected to contribute to chlamydial growth defects. To verify this, glycolytic and pentose phosphate pathways were analysed revealing the importance of a functioning PPP for chlamydial growth. In addition, increased expression of glucose-6-phosphate dehydrogenase rescued chlamydial growth inhibition induced by activated p53. The rescuing effect was even more pronounced in p53-deficient cells treated with etoposide or nutlin-3 revealing additional p53-independent aspects of Chlamydia inhibition. Removal of ROS by anti-oxidant compounds was not sufficient to rescue chlamydial infectivity. Apparently, not only the anti-oxidant capacities of the PPP but also provision of precursors for nucleotide synthesis as well as contribution to DNA repair are important for successful chlamydial growth. Modulation of host cell signalling was previously reported for a number of pathogens. As formation of ROS and DNA damage are likely to occur during infections of intracellular bacteria, several strategies to manipulate the host and to inhibit induction of apoptosis were invented. Downregulation of the tumour suppressor p53 is a crucial point during development of Chlamydia, ensuring both host cell survival and metabolic support conducive to chlamydial growth.}, subject = {Chlamydia-trachomatis-Infektion}, language = {en} } @phdthesis{Tsoneva2017, author = {Tsoneva, Desislava}, title = {Humanized mouse model: a system to study the interactions of human immune system with vaccinia virus-infected human tumors in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118983}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Ein vielversprechender neuer Ansatz zur Behandlung von Krebs beim Menschen ist die Verwendung von onkolytischen Viren, die einen Tumor-spezifischen Tropismus aufweisen. Einer der Top-Kandidaten in diesem Bereich ist das onkolytische Vaccinia Virus (VACV), das bereits vielversprechende Ergebnisse in Tierversuchen und in klinischen Studien gezeigt hat. Aber die von den in vivo in tierischen Modellen erhaltenen Resultate k{\"o}nnten ungenaue Informationen wegen der anatomischen und physiologischen Unterschiede zwischen den Spezies liefern. Andererseits sind Studien in Menschen aufgrund ethischer Erw{\"a}gungen und potenzieller Toxizit{\"a}t nur limitiert m{\"o}glich. Die zahlreichen Einschr{\"a}nkungen und Risiken, die mit den Humanstudien verbunden sind, k{\"o}nnten mit der Verwendung eines humanisierten Mausmodells vermieden werden. Die LIVP-1.1.1, GLV-2b372, GLV-1h68, GLV-1h375, GLV-1h376 and GLV-1h377 VACV St{\"a}mmen wurden von der Genelux Corporation zur Verf{\"u}gung gestellt. GLV-2b372 wurde durch Einf{\"u}gen der TurboFP635 Expressionskassette in den J2R Genlocus des parentalen LIVP-1.1.1-Stammes konstruiert. GLV-1h375, -1h376 and -1h377 kodiert das Gen f{\"u}r den menschlichen CTLA4-blockierenden Einzelketten-Antik{\"o}rper (CTLA4 scAb). Befunde aus Replikations- and Zytotoxizit{\"a}tsstudien zeigten, dass alle sechs Viren Tumorzellen infizieren, sich in ihnen replizieren und sie in Zellkultur schließlich ebenso dosis- und zeitabh{\"a}ngig effizient abt{\"o}ten konnten. CTLA4 scAb und β-Glucuronidase (GusA) Expression sowie Virus Titer in GLV-1h376-infizierten A549-Zellen wurde anhand von ELISA-, β-Glucuronidase- and Standard Plaque-Assays bestimmt. Hierbei zeigte sich eine ausgezeichnete Korrelation mit Korrelationskoeffizienten R2>0.9806. Der durch das GLV-1h376 kodierte CTLA4 scAb wurde erfolgreich aus {\"U}berst{\"a}nden von infizierten CV-1-Zellen gereinigt. CTLA4 scAb hat eine hohe in-vitro-Affinit{\"a}t zu seinem menschlichen CTLA4-Zielmolek{\"u}l sowie abwesende Kreuzreaktivit{\"a}t gegen{\"u}ber murine CTLA4 gezeigt. CTLA4 scAb Funktionalit{\"a}t wurde in Jurkat-Zellen best{\"a}tigt. LIVP-1.1.1, GLV-2b372, GLV-1h68 und GLV-1h376 wurden auch in nicht-tumor{\"o}sen und/oder tumortragenden humanisierten M{\"a}usen getestet. Zun{\"a}chst wurde gezeigt, dass die Injektion von menschlichen CD34+ Stammzellen in die Leber von vorkonditionierten neugeborenen NSG M{\"a}usen zu einer erfolgreichen systemische Rekonstitution mit menschlichen Immunzellen gef{\"u}hrt hat. CD19+-B-Zellen, CD4+- und CD8+-CD3+-T-Zellen, NKp46+CD56- und NKp46+CD56+-NK-Zellen sowie CD33+-myeloischen Zellen wurden detektiert. Die Mehrheit der nachgewisenen humanen h{\"a}matopoetischen Zellen im M{\"a}useblut in den ersten Wochen nach der Humanisierung waren CD19+-B-Zellen, und nur ein kleiner Teil waren CD3+-T-Zellen. Mit der Zeit wurde eine signifikante Ver{\"a}nderung in CD19+/CD3+-Verh{\"a}ltnis beobachtet, die parallel zur Abnahme der B-Zellen und einem Anstieg der T-Zellen kam. Die Implantation von A549-Zellen unter die Haut dieser M{\"a}use f{\"u}hrte zu einem progressiven Tumorwachstum. Bildgebende Verfahren zur Detektion von Virus-vermittelter TurboFP635- und GFP-Expression, Standard Plaque Assays sowie immunohistochemische Analysen best{\"a}tigten die erfolgreiche Invasion der Viren in die subkutanen Tumoren. Die humane CD45+-Zellpopulation in Tumoren wurde haupts{\"a}chlich durch NKp46+CD56bright-NK-Zellen und einen hohen Anteil von aktivierten CD4+- und zytotoxische CD8+-T-Zellen dargestellt. Es wurden jedoch keine signifikanten Unterschiede zwischen den Kontroll- und LIVP-1.1.1-infizierten Tumoren beobachtet, was darauf hindeutete, dass die Rekrutierung von NK- und aktivierten T-Zellen, mehr Tumorgewebe-spezifisch als Virus-abh{\"a}ngig waren. Die GLV-1h376-vermittelten CTLA4 scAb-Expression in den infizierten Tumoren war ebenfalls nicht in der Lage, die Aktivierung von Tumor-infiltrierenden T-Zellen im Vergleich zur Kontrolle und GLV-1h68-behandelten M{\"a}usen, signifikant zu erh{\"o}hen. ELISA-, β-Glucuronidase- and Standard Plaque-Assays zeigten eine eindeutige Korrelation mit den Korrelationskoeffizienten R2>0,9454 zwischen CTLA4 scAb- und GusA-Konzentrationen und Virus Titer in Tumorproben von GLV-1h376-behandelten M{\"a}usen. T-Zellen, die aus der Milz dieser Tumor-tragenden M{\"a}use isoliert wurden, waren funktionell und konnten erfolgreich mit Beads aktiviert werden. Mehr CD25+ und IFN-ɣ+ T-Zellen wurden in der GLV-1h376-Gruppe gefunden, wahrscheinlich aufgrund der CTLA4-Blockade durch die Virus-vermittelte CTLA4 scAb-Expression in den M{\"a}usen. Außerdem wurde eine h{\"o}here Konzentration von IL-2 in dem Kultur{\"u}berstand von diesen Splenozyten im Vergleich zu Kontrollproben nachgewiesen. Im Gegensatz zu der Aktivierung mit Beads konnten T-Zellen von allen drei Maus-Gruppen nicht durch A549 Tumorzellen ex vivo aktiviert werden. Unser Mausmodell hat den besonderen Vorteil, dass sich Tumoren unter der Haut der humanisierten M{\"a}use entwickeln, was eine genaue {\"U}berwachung des Tumorwachstums und Auswertung der onkolytischen Virotherapie erm{\"o}glicht.}, subject = {Vaccinia virus}, language = {en} } @phdthesis{Weber2007, author = {Weber, Natalia}, title = {Psychosoziale Aspekte bei heredit{\"a}rer Mamma/Ovarial-Ca-Belastung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28330}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Ziel dieser Arbeit war die Untersuchung der psychischen Befindlichkeit und anderer gesundheitsbezogenen Konditionen der Frauen und M{\"a}nner mit famili{\"a}ren Mamma- und Ovarialkarzinomrisiko sowie die Kl{\"a}rung hinsichtlich der Bew{\"a}ltigung und Auswirkung genetischer Risikoinformation. Es wurden Risikowahrnehmung, Informationsstand, Inanspruchnahme der Beratungsangebote sowie der Fr{\"u}herkennungsmaßnahmen, Einstellung gegen{\"u}ber genetischer Brustkrebsdiagnostik und famili{\"a}rer/sozialer Kommunikation untersucht. Die vollst{\"a}ndig ausgef{\"u}llten Frageb{\"o}gen von Ratsuchenden und Betroffenen, die an der Beratung und Befragung im Zentrum f{\"u}r „Famili{\"a}ren Brust-/Eierstockkrebs" teilgenommen haben, wurden von uns ausgewertet. F{\"u}r die beratenden Institutionen ist das Wissen der vielf{\"a}ltigen psychischen und sozialen Folgen bei den Testsuchenden und deren Familien sehr wichtig. Nur so kann das Betreuungskonzept und das Beratungsangebot verbessert werden.}, subject = {Brustkrebs}, language = {de} }