@phdthesis{Heidbreder2012, author = {Heidbreder, Meike}, title = {Association and Activation of TNF-Receptor I Investigated with Single-Molecule Tracking and Super-Resolution Microscopy in Live Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73191}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Cellular responses to outer stimuli are the basis for all biological processes. Signal integration is achieved by protein cascades, recognizing and processing molecules from the environment. Factors released by pathogens or inflammation usually induce an inflammatory response, a signal often transduced by Tumour Necrosis Factor alpha (TNF). TNFα receptors TNF-R1 and TNF-R2 can in turn lead to apoptosis or proliferation via NF-B. These processes are closely regulated by membrane compartimentalization, protein interactions and trafficking. Fluorescence microscopy offers a reliable and non-invasive method to probe these cellular events. However, some processes on a native membrane are not resolvable, as they are well below the diffraction limit of microscopy. The recent development of super-resolution fluorescence microscopy methods enables the observation of these cellular players well below this limit: by localizing, tracking and counting molecules with high spatial and temporal resolution, these new fluorescence microscopy methods offer a previously unknown insight into protein interactions at the near-molecular level. Direct stochastic optical reconstruction microscopy (dSTORM) utilizes the reversible, stochastic blinking events of small commercially available fluorescent dyes, while photoactivated localization microscopy (PALM) utilizes phototransformation of genetically encoded fluorescent proteins. By photoactivating only a small fraction of the present fluorophores in each observation interval, single emitters can be localized with high precision and a super-resolved image can be reconstructed. Quantum Dot Triexciton imaging (QDTI) utilizes the three-photon absorption (triexcitonic) properties of quantum dots (QD) and to achieve a twofold resolution increase using conventional confocal microscopes. In this thesis, experimental approaches were implemented to achieve super-resolution microscopy in fixed and live-cells to study the spatial and temporal dynamics of TNF and other cellular signaling events. We introduce QDTI to study the three-dimensional cellular distribution of biological targets, offering an easy method to achieve resolution enhancement in combination with optical sectioning, allowing the preliminary quantification of labeled proteins. As QDs are electron dense, QDTI can be used for correlative fluorescence and transmission electron microscopy, proving the versatility of QD probes. Utilizing the phototransformation properties of fluorescent proteins, single-receptor tracking on live cells was achieved, applying the concept of single particle tracking PALM (sptPALM) to track the dynamics of a TNF-R1-tdEos chimera on the membrane. Lateral receptor dynamics can be tracked with high precision and the influences of ligand addition or lipid disruption on TNF-R1 mobility was observed. The results reveal complex receptor dynamics, implying internalization processes in response to TNFα stimulation and a role for membrane domains with reduced fluidity, so-called lipid raft domains, in TNF-R1 compartimentalization prior or post ligand induction. Comparisons with previously published FCS data show a good accordance, but stressing the increased data depth available in sptPALM experiments. Additionally, the active transport of NF-κB-tdEos fusions was observed in live neurons under chemical stimulation and/or inhibition. Contrary to phototransformable proteins that need no special buffers to exhibit photoconversion or photoactivation, dSTORM has previously been unsuitable for in vivo applications, as organic dyes relied on introducing the probes via immunostaining in concert with a reductive, oxygen-free medium for proper photoswitching behaviour. ATTO655 had been previously shown to be suitable for live-cell applications, as its switching behavior can be catalyzed by the reductive environment of the cytoplasm. By introducing the cell-permeant organic dye via a chemical tag system, a high specificity and low background was achieved. Here, the labeled histone H2B complex and thus single nucleosome movements in a live cell can be observed over long time periods and with ~20 nm resolution. Implementing these new approaches for imaging biological processes with high temporal and spatial resolution provides new insights into the dynamics and spatial heterogeneities of proteins, further elucidating their function in the organism and revealing properties that are usually only detectable in vitro.  }, subject = {Fluoreszenzmikrosopie}, language = {en} } @phdthesis{Roeschert2021, author = {R{\"o}schert, Isabelle}, title = {Aurora-A prevents transcription-replication conflicts in MYCN-amplified neuroblastoma}, doi = {10.25972/OPUS-24303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243037}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Neuroblastoma is the most abundant, solid, extracranial tumor in early childhood and the leading cause of cancer-related childhood deaths worldwide. Patients with high-risk neuroblastoma often show MYCN-amplification and elevated levels of Aurora-A. They have a low overall survival and despite multimodal therapy options a poor therapeutic prognosis. MYCN-amplified neuroblastoma cells depend on Aurora-A functionality. Aurora-A stabilizes MYCN and prevents it from proteasomal degradation by competing with the E3 ligase SCFFBXW7. Interaction between Aurora-A and MYCN can be observed only in S phase of the cell cycle and activation of Aurora-A can be induced by MYCN in vitro. These findings suggest the existence of a profound interconnection between Aurora-A and MYCN in S phase. Nevertheless, the details remain elusive and were investigated in this study. Fractionation experiments show that Aurora-A is recruited to chromatin in S phase in a MYCN-dependent manner. Albeit being unphosphorylated on the activating T288 residue, Aurora-A kinase activity was still present in S phase and several putative, novel targets were identified by phosphoproteomic analysis. Particularly, eight phosphosites dependent on MYCN-activated Aurora-A were identified. Additionally, phosphorylation of serine 10 on histone 3 was verified as a target of this complex in S phase. ChIP-sequencing experiments reveal that Aurora-A regulates transcription elongation as well as histone H3.3 variant incorporation in S phase. 4sU-sequencing as well as immunoblotting demonstrated that Aurora-A activity impacts splicing. PLA measurements between the transcription and replication machinery revealed that Aurora-A prevents the formation of transcription-replication conflicts, which activate of kinase ATR. Aurora-A inhibitors are already used to treat neuroblastoma but display dose-limiting toxicity. To further improve Aurora-A based therapies, we investigated whether low doses of Aurora-A inhibitor combined with ATR inhibitor could increase the efficacy of the treatment albeit reducing toxicity. The study shows that the combination of both drugs leads to a reduction in cell growth as well as an increase in apoptosis in MYCN-amplified neuroblastoma cells, which is not observable in MYCN non-amplified neuroblastoma cells. This new approach was also tested by a collaboration partner in vivo resulting in a decrease in tumor burden, an increase in overall survival and a cure of 25\% of TH-MYCN mice. These findings indicate indeed a therapeutic window for targeting MYCN-amplified neuroblastoma.}, subject = {Neuroblastom}, language = {en} } @phdthesis{Grimm2019, author = {Grimm, Johannes}, title = {Autocrine and paracrine effects of BRAF inhibitor induced senescence in melanoma}, doi = {10.25972/OPUS-18116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181161}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The FDA approval of targeted therapy with BRAFV600E inhibitors like vemurafenib and dabrafenib in 2011 has been the first major breakthrough in the treatment of metastatic melanoma since almost three decades. Despite increased progression free survival and elevated overall survival rates, complete responses are scarce due to resistance development approximately six months after the initial drug treatment. It was previously shown in our group that melanoma cells under vemurafenib pressure in vitro and in vivo exhibit features of drug-induced senescence. It is known that some cell types, which undergo this cell cycle arrest, develop a so-called senescence associated secretome and it has been reported that melanoma cell lines also upregulate the expression of different factors after senescence induction. This work describes the effect of the vemurafenib-induced secretome on cells. Conditioned supernatants of vemurafenib-treated cells increased the viability of naive fibroblast and melanoma cell lines. RNA analysis of donor melanoma cells revealed elevated transcriptional levels of FGF1, MMP2 and CCL2 in the majority of tested cell lines under vemurafenib pressure, and I could confirm the secretion of functional proteins. Similar observations were also done after MEK inhibition as well as in a combined BRAF and MEK inhibitor treatment situation. Interestingly, the transcription of other FGF ligands (FGF7, FGF17) was also elevated after MEK/ERK1/2 inhibition. As FGF receptors are therapeutically relevant, I focused on the analysis of FGFR-dependent processes in response to BRAF inhibition. Recombinant FGF1 increased the survival rate of melanoma cells under vemurafenib pressure, while inhibition of the FGFR pathway diminished the viability of melanoma cells in combination with vemurafenib and blocked the stimulatory effect of vemurafenib conditioned medium. The BRAF inhibitor induced secretome is regulated by active PI3K/AKT signaling, and the joint inhibition of mTor and BRAFV600E led to decreased senescence induction and to a diminished induction of the secretome-associated genes. In parallel, combined inhibition of MEK and PI3K also drastically decreased mRNA levels of the relevant secretome components back to basal levels. In summary, I could demonstrate that BRAF inhibitor treated melanoma cell lines acquire a specific PI3K/AKT dependent secretome, which is characterized by FGF1, CCL2 and MMP2. This secretome is able to stimulate other cells such as naive melanoma cells and fibroblasts and contributes to a better survival under drug pressure. These data are therapeutically highly relevant, as they imply the usage of novel drug combinations, especially specific FGFR inhibitors, with BRAF inhibitors in the clinic.}, subject = {Inhibitor}, language = {en} } @phdthesis{Seitz2020, author = {Seitz, Nicola}, title = {Bee demise and bee rise: From honey bee colony losses to finding measures for advancing entire bee communities}, doi = {10.25972/OPUS-18418}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184180}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {My dissertation comprises three studies: (1) an assessment of honey bee colony losses in the USA between 2014 and 2015, (2) an exploration of the potential of reclaimed sand mines as bee habitat, and (3) an evaluation of native and non-native pollinator friendly plants in regard to their attraction to bees. While the first study focuses on honey bees, the latter two studies primarily take wild bees or entire bee communities in focus. The study on honey bee colony losses was conducted within the framework of the Bee Informed Partnership (BIP, beeinformed.org) and aligns with the annual colony loss surveys which have been conducted in the USA since the winter of 2006/2007. It was the fourth year for which summer and annual losses were calculated in addition to winter losses. Among participants, backyard beekeepers were the largest group (n = 5690), although sideline (n = 169) and commercial (n = 78) beekeepers managed the majority (91.7 \%) of the 414 267 surveyed colonies. Overall, 15.1 \% of the estimated 2.74 million managed colonies in the USA were included in the study. Total honey bee colony losses (based on the entirety of included colonies) were higher in summer (25.3 \%) than in winter (22.3 \%) and amounted to 40.6 \% for the entire 2014/2015 beekeeping year. Average colony losses per beekeeper or operation were higher in winter (43.7 \%) than in summer (14.7 \%) and amounted to 49 \% for the entire 2014/2015 beekeeping year. Due to the dominance of backyard beekeepers among participants, average losses per operation (or unweighted loss) stronger reflected this smaller type of beekeeper. Backyard beekeepers mainly named colony management issues (e.g., starvation, weak colony in the fall) as causes for mortality, while sideline and commercial beekeepers stronger emphasized parasites or factors outside their control (e.g., varroa, nosema, queen failure). The second study took place at reclaimed sand mines. Sand mines represent anthropogenically impacted habitats found worldwide, which bear potential for bee conservation. Although floral resources can be limited at these habitats, vegetation free patches of open sandy soils and embankments may offer good nesting possibilities for sand restricted and other bees. We compared bee communities as found in three reclaimed sand mines and at adjacent roadside meadows in Maryland, USA, over two years. Both sand mines and roadsides hosted diverse bee communities with 111 and 88 bee species, respectively. Bee abundances as well as richness and Shannon diversity of bee species were higher in sand mines than at roadsides and negatively correlated with the percentage of vegetational ground cover. Species composition also differed significantly between habitats. Sand mines hosted a higher proportion of ground nesters, more uncommon and more 'sand loving' bees similar to natural sandy areas of Maryland. Despite the destruction of the original pre-mining habitat, sand mines thus appear to represent a unique habitat for wild bees, particularly when natural vegetation and open sand spots are encouraged. Considering habitat loss, the lack of natural disturbance regimes, and ongoing declines of wild bees, sand mines could add promising opportunities for bee conservation which has hitherto mainly focused on agricultural and urban habitats. The third study was an experimental field study on pollinator friendly plants. Bees rely on the pollen and nectar of plants as their food source. Therefore, pollinator friendly plantings are often used for habitat enhancements in bee conservation. Non-native pollinator friendly plants may aid in bee conservation efforts, but have not been tested and compared with native pollinator friendly plants in a common garden experiment. In this study, we seeded mixes of 20 native and 20 non-native pollinator friendly plants in two separate plots at three sites in Maryland, USA. For two years, we recorded flower visitors to the plants throughout the blooming period and additionally sampled bees with pan traps. A total of 3744 bees (120 species) were sampled in the study. Of these, 1708 bees (72 species) were hand netted directly from flowers for comparisons between native and non-native plants. Depending on the season, bee abundance and species richness was either similar or lower (early season and for richness also late season) at native plots compared to non-native plots. Additionally, the overall bee community composition differed significantly between native and non-native plots. Furthermore, native plants were associated with more specialized plant-bee visitation networks compared to non-native plants. In general, visitation networks were more specialized in the early season than the later seasons. Four species (Bombus impatiens, Halictus poeyi/ligatus, Lasioglossum pilosum, and Xylocopa virginica) out of the five most abundant bee species (also including Apis mellifera) foraged more specialized on native than non-native plants. Our study showed that non-native plants were well accepted by a diverse bee community and had a similar to higher attraction for bees compared to native plants. However, we also demonstrated alterations in foraging behavior, bee community assemblage, and visitation networks. As long as used with caution, non-native plants can be a useful addition to native pollinator friendly plantings. This study gives a first example of a direct comparison between native and non-native pollinator friendly plants.}, subject = {Biene}, language = {en} } @phdthesis{Gabel2024, author = {Gabel, Martin Sebastian}, title = {Behavioural resistance to \(Varroa\) \(destructor\) in the Western honeybee \(Apis\) \(mellifera\) - Mechanisms leading to decreased mite reproduction}, doi = {10.25972/OPUS-36053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360536}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The Western Honeybee (Apis mellifera) is among the most versatile species in the world. Its adaptability is rooted in thousands of the differently specialized individuals acting jointly together. Thus, bees that are able to handle a certain task or condition well can back up other individuals less capable to do so on the colony level. Vice versa, the latter individuals might perform better in other situations. This evolutionary recipe for success ensures the survival of colonies despite challenging habitat conditions. In this context, the ectoparasitic mite Varroa destructor reflects the most pronounced biotic challenge to honeybees worldwide. Without proper treatment, infested colonies rapidly dwindle and ultimately die. Nevertheless, resistance behaviours against this parasite have evolved in some populations through natural selection, enabling colonies to survive untreated. In this, different behaviours appear to be adapted to the respective habitat conditions and may complement each other. Yet, the why and how of this behavioural response to the mite remains largely unknown. My thesis focuses on the biological background of Varroa-resistance traits in honeybees and presents important findings for the comprehension of this complex host-parasite interaction. Based on this, I draw implications for both, applied bee breeding and scientific investigations in the field of Varroa-resistance. Specifically, I focus on two traits commonly found in resistant and, to a lower degree, also mite-susceptible colonies: decreased mite reproduction and the uncapping and subsequent recapping of sealed brood cells. Examining failures in the reproductive success of mites as a primary mechanism of Varroa-resistance, I was able to link them to specific bee behaviours and external factors. Since mite reproduction and the brood rearing of bees are inevitably connected, I first investigated the effects of brood interruption on the reproductive success of mites. Brood interruption decreased the reproductive success of mites both immediately and in the long term. By examining the causes of reproductive failure, I could show that this was mainly due to an increased share of infertile mites. Furthermore, I proved that interruption in brood rearing significantly increased the expression of recapping behaviour. These findings consequently showed a dynamic modulation of mite reproduction and recapping, as well as a direct effect of brood interruption on both traits. To further elucidate the plasticity in the expression of both traits, I studied mite reproduction, recapping behaviour and infestation levels over the course of three years. The resulting extensive dataset unveiled a significant seasonal variation in mite reproduction and recapping. In addition, I show that recapping decreases the reproductive success of mites by increasing delayed developing female offspring and cells lacking male offspring. By establishing a novel picture-based brood investigation method, I could furthermore show that both the removal of brood cells and recapping activity specifically target brood ages in which mite offspring would be expected. Recapping, however, did not cause infertility of mites. Considering the findings of my first study, this points towards complementary mechanisms. This underlines the importance of increased recapping behaviour and decreased mite reproduction as resistance traits, while at the same time emphasising the challenges of reliable data acquisition. To pave the way for a practical application of these findings in breeding, we then investigated the heritability (i.e., the share of genotypic variation on the observed phenotypic variation) of the accounted traits. By elaborating comparable test protocols and compiling data from over 4,000 colonies, we could, for the first time, demonstrate that recapping of infested cells and decreased reproductive success of mites are heritable (and thus selectable) traits in managed honeybee populations. My thesis proves the importance of recapping and decreased mite reproduction as resistance traits and therefore valuable goals for breeding efforts. In this regard, I shed light on the underlying mechanisms of both traits, and present clear evidence for their interaction and heritability.}, subject = {Varroa destructor}, language = {en} } @phdthesis{Heidinger2015, author = {Heidinger, Ina M. M.}, title = {Beyond metapopulation theory: Determinants of the dispersal capacity of bush crickets and grasshoppers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135068}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Habitat fragmentation and destruction due to anthropogenic land use are the major causes of the increasing extinction risk of many species and have a detrimental impact on animal populations in numerous ways. The long-term survival and stability of spatially structured populations in fragmented landscapes largely depends on the colonisation of habitat patches and the exchange of individuals and genes between patches. The degree of inter-patch dispersal, in turn, depends on the dispersal ability of a species (i.e. the combination of physiological and morphological factors that facilitate dispersal) and the landscape structure (i.e. the nature of the landscape matrix or the spatial configuration of habitat patches). As fragmentation of landscapes is increasing and the number of species is continuously declining, a thorough understanding of the causes and consequences of dispersal is essential for managing natural populations and developing effective conservation strategies. In the context of animal dispersal, movement behaviour is intensively investigated with capture-mark-recapture studies. For the analysis of such experiments, the influence of marking technique, handling and translocation of marked animals on movement pattern is of crucial importance since it may mask the effects of the main research question. Chapter 2 of this thesis presents a capture-mark-recapture study investigating the effect of translocation on the movement behaviour of the blue-winged grasshopper Oedipoda caerulescens. Transferring individuals of this grasshopper species to suitable but unfamilliar sites has a significant influence on their movement behaviour. Translocated individuals moved longer distances, showed smaller daily turning angles, and thus their movements were more directed than those of resident individuals. The effect of translocation was most pronounced on the first day of the experiment, but may persist for longer. On average, daily moved distances of translocated individuals were about 50 \% longer than that of resident individuals because they have been transferred to an unfamiliar habitat patch. Depending on experiment duration, this leads to considerable differences in net displacement between translocated and resident individuals. In summary, the results presented in chapter 2 clearly point out that translocation effects should not be disregarded in future studies on arthropod movement, respectively dispersal. Studies not controlling for possible translocation effects may result in false predictions of dispersal behaviour, habitat detection capability or habitat preferences. Beside direct field observations via capture-mark-recapture methods, genetic markers can be used to investigate animal dispersal. Chapter 3 presents data on the genetic structure of populations of Metrioptera bicolor, a wing-dimorphic bush cricket, in a spatially structured landscape with patches of suitable habitat distributed within a diverse matrix of different habitat types. Using microsatellite markers, the effects of geographic distance and different matrix types on the genetic differentiation among 24 local populations was assessed. The results of this study clearly indicate that for M. bicolor the isolation of local populations severely depends on the type of surrounding matrix. The presence of forest and a river running through the study area was positively correlated with the extent of genetic differentiation between populations. This indicates that both matrix types severely impede gene flow and the exchange of individuals between local populations of this bush cricket. In addition, for a subsample of populations which were separated only by arable land or settlements, a significant positive correlation between pairwise genetic and geographic distances exists. For the complete data set, this correlation could not be found. This is most probably due to the adverse effect of forest and river on gene flow which dominates the effect of geographic distance in the limited set of patches investigated in this study. The analyses in chapter 3 clearly emphasize the differential resistance of different habitat types on dispersal and the importance of a more detailed view on matrix 'quality' in metapopulation studies. Studies that focus on the specific dispersal resistance of different matrix types may provide much more detailed information on the dispersal capacity of species than a mere analysis of isolation by distance. Such information is needed to improve landscape oriented models for species conservation. In addition to direct effects on realised dispersal (see chapter 3), landscape structure on its own is known to act as an evolutionary selection agent because it determines the costs and benefits of dispersal. Both morphological and behavioural traits of individuals and the degree to which a certain genotype responds to environmental variation have heritable components, and are therefore expected to be able to respond to selection pressures. Chapter 4 analyses the influence of patch size, patch connectivity (isolation of populations) and sand dynamics (stability of habitat) on thorax- and wing length as proxies for dispersal ability of O. caerulescens in coastal grey dunes. This study revealed clear and sex-specific effects of landscape dynamics and patch configuration on dispersal-related morphology. Males of this grasshopper species were smaller and had shorter wings if patches were larger and less connected. In addition, both sexes were larger in habitat patches with high sand dynamics compared to those in patches with lower dynamics. The investments in wing length were only larger in connected populations when sand dynamics were low, indicating that both landscape and patch-related environmental factors are of importance. These results are congruent with theoretical predictions on the evolution of dispersal in metapopulations. They add to the evidence that dispersal-related morphology varies and is selected upon in recently structured populations even at small spatial scales. Dispersal involves different individual fitness costs like increased predation risk, energy expenditure, costs of developing dispersal-related traits, failure to find new suitable habitat as well as reproductive costs. Therefore, the decision to disperse should not be random but depend on the developmental stage or the physiological condition of an individual just as on actual environmental conditions (context-dependent dispersal, e.g. sex- and wing morph-biased dispersal). Biased dispersal is often investigated by comparing the morphology, physiology and behaviour of females and males or sedentary and dispersive individuals. Studies of biased dispersal in terms of capture-mark-recapture experiments, investigating real dispersal and not routine movements, and genetic proofs of biased dispersal are still rare for certain taxa, especially for orthopterans. However, information on biased dispersal is of great importance as for example, undetected biased dispersal may lead to false conclusions from genetic data. In chapter 5 of this thesis, a combined approach of morphological and genetic analyses was used to investigate biased dispersal of M. bicolor. The presented results not only show that macropterous individuals are predestined for dispersal due to their morphology, the genetic data also indicate that macropters are more dispersive than micropters. Furthermore, even within the group of macropterous individuals, males are supposed to be more dispersive than females. To get an idea of the flight ability of M. bicolor, the morphological data were compared with that of Locusta migratoria and Schistocerca gregaria, which are proved to be very good flyers. Based on the morphological data presented here, one can assume a good flight ability for macropters of M. bicolor, although flying individuals of this species are seldom observed in natural populations.}, subject = {Heuschrecken <{\"U}berfamilie>}, language = {en} } @phdthesis{Bertho2016, author = {Bertho, Sylvain}, title = {Biochemical and molecular characterization of an original master sex determining gene in Salmonids}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139130}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Sexual development is a fundamental and versatile process that shapes animal morphology, physiology and behavior. The underlying developmental process is composed of the sex determination and the sex differentiation. Sex determination mechanisms are extremely labile among taxa. The initial triggers of the sex determination process are often genetics called sex determining genes. These genes are expressed in the bipotential gonad and tilt the balance to a developmental program allowing the differentiation of either a testis or an ovary. Fish represent a large and fascinating vertebrate group to study both sex determination and sex differentiation mechanisms. To date, among the known sex determining genes, three gene families namely sox, dmrt and TGF-β factors govern this developmental program. As exception to this rule, sdY "sexually dimorphic on the Y" does not belong to one of these families as it comes from the duplication / evolution of an ancestor gene related to immunity, i.e., the interferon related factor 9, irf9. sdY is the master sex determining gene in salmonids, a group of fishes that include species such as rainbow trout and Atlantic salmon. The present study was aimed to firstly characterize the features of SdY protein. Results indicate that SdY is predominantly localized in the cytoplasm tested in various fish and mammalian cell lines and confirmed by different methods. Predictive in silico analysis revealed that SdY is composed of a β-sandwich core surrounded by three α-helices as well specific characteristics conferring a putative protein-protein interaction site. Secondly, the study was aimed to understand how SdY could trigger testicular differentiation. SdY is a truncated divergent version of Irf9 that has a conserved protein-protein domain but lost the DNA interaction domain of its ancestor gene. It was then hypothesized that SdY could initiate testicular differentiation by protein-protein interactions. To evaluate this we first conducted a yeast-two-hybrid screen that revealed a high proportion of transcription factors including fox proteins. Using various biochemical and cellular methods we confirm an interaction between SdY and Foxl2, a major transcription factor involved in ovarian differentiation and identity maintenance. Interestingly, the interaction of SdY with Foxl2 leads to nuclear translocation of SdY from the cytoplasm. Furthermore, this SdY translocation mechanism was found to be specific to fish Foxl2 and to a lesser extend Foxl3 and not other Fox proteins or mammalian FoxL2. In addition, we found that this interaction allows the stabilization of SdY and prevents its degradation. Finally, to better decipher SdY action we used as a model a mutated version of SdY that was identified in XY females of Chinook salmon natural population. Results show that this mutation induces a local conformation defect obviously leading to a misfolded protein and a quick degradation. Moreover, the mutated version compromised the interaction with Foxl2 defining a minimal threshold to induce testicular differentiation. Altogether results from my thesis propose that SdY would trigger testicular differentiation in salmonids by preventing Foxl2 to promote ovarian differentiation. Further research should be now carried out on how this interaction of SdY and Foxl2 acts in-vivo.}, subject = {Lachsartige }, language = {en} } @phdthesis{Fackler2014, author = {Fackler, Marc}, title = {Biochemical characterization of GAS2L3, a target gene of the DREAM complex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103394}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {GAS2L3 was identified recently as a target gene of the DREAM complex (Reichert et al., 2010; Wolter et al., 2012). It was shown that GAS2L3 is expressed in a cell cycle specific manner and that depletion of the protein leads to defects in cytokinesis and genomic instability (Wolter et al., 2012). Major aim of this thesis was, to further characterize the biochemical properties and physiological function of GAS2L3. By in vitro co-sedimentation and bundling assays, GAS2L3 was identified as a cytoskeleton associated protein which bundles, binds and crosslinks F-actin and MTs. GST pulldown assays and co-immunoprecipitation experiments revealed that GAS2L3 interacts in vitro and in vivo with the chromosomal passenger complex (CPC), a very important regulator of mitosis and cytokinesis, and that the interaction is mediated by the GAR domain of GAS2L3 and the C-terminal part of Borealin and the N-terminal part of Survivin. Kinase assays showed that GAS2L3 is not a substrate of the CPC but is strongly phosphorylated by CDK1 in vitro. Depletion of GAS2L3 by shRNA influenced protein stability and activity of the CPC. However pharmacological studies showed that the decreased CPC activity is not responsible for the observed cytokinesis defects upon GAS2L3 depletion. Immunofluorescence experiments revealed that GAS2L3 is localized to the constriction zone by the CPC in a GAR dependent manner and that the GAR domain is important for proper protein function. New interacting proteins of GAS2L3 were identified by stable isotope labelling by amino acids in cell culture (SILAC) in combination with tandem affinity purification and subsequent mass spectrometrical analysis. Co-immunoprecipitation experiments further confirmed the obtained mass spectrometrical data. To address the physiological function of GAS2L3 in vivo, a conditional and a non-conditional knockout mouse strain was established. The non-conditional mouse strain showed a highly increased mortality rate before weaning age probably due to heart failure. The physiological function of GAS2L3 in vivo as well as the exact reason for the observed heart phenotype is not known at the moment.}, subject = {Zellzyklus}, language = {en} } @phdthesis{Gruendl2021, author = {Gr{\"u}ndl, Marco}, title = {Biochemical characterization of the MMB-Hippo crosstalk and its physiological relevance for heart development}, doi = {10.25972/OPUS-21332}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213328}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The Myb-MuvB (MMB) complex plays an essential role in the time-dependent transcriptional activation of mitotic genes. Recently, our laboratory identified a novel crosstalk between the MMB-complex and YAP, the transcriptional coactivator of the Hippo pathway, to coregulate a subset of mitotic genes (Pattschull et al., 2019). Several genetic studies have shown that the Hippo-YAP pathway is essential to drive cardiomyocyte proliferation during cardiac development (von Gise et al., 2012; Heallen et al., 2011; Xin et al., 2011). However, the exact mechanisms of how YAP activates proliferation of cardiomyocytes is not known. This doctoral thesis addresses the physiological role of the MMB-Hippo crosstalk within the heart and characterizes the YAP-B-MYB interaction with the overall aim to identify a potent inhibitor of YAP. The results reported in this thesis indicate that complete loss of the MMB scaffold protein LIN9 in heart progenitor cells results in thinning of ventricular walls, reduced cardiomyocyte proliferation and early embryonic lethality. Moreover, genetic experiments using mice deficient in SAV1, a core component of the Hippo pathway, and LIN9-deficient mice revealed that the correct function of the MMB complex is critical for proliferation of cardiomyocytes due to Hippo-deficiency. Whole genome transcriptome profiling as well as genome wide binding studies identified a subset of Hippo-regulated cell cycle genes as direct targets of MMB. By proximity ligation assay (PLA), YAP and B-MYB were discovered to interact in embryonal cardiomyocytes. Biochemical approaches, such as co-immunoprecipitation assays, GST-pulldown assays, and µSPOT-based peptide arrays were employed to characterize the YAP-B-MYB interaction. Here, a PY motif within the N-terminus of B-MYB was found to directly interact with the YAP WW-domains. Consequently, the YAP WW-domains were important for the ability of YAP to drive proliferation in cardiomyocytes and to activate MMB target genes in differentiated C2C12 cells. The biochemical information obtained from the interaction studies was utilized to develop a novel competitive inhibitor of YAP called MY-COMP (Myb-YAP competition). In MY-COMP, the protein fragment of B-MYB containing the YAP binding domain is fused to a nuclear localization signal. Co-immunoprecipitation studies as well as PLA revealed that the YAP-B-MYB interaction is robustly blocked by expression of MY-COMP. Adenoviral overexpression of MY-COMP in embryonal cardiomyocytes suppressed entry into mitosis and blocked the pro-proliferative function of YAP. Strikingly, characterization of the cellular phenotype showed that ectopic expression of MY-COMP led to growth defects, nuclear abnormalities and polyploidization in HeLa cells. Taken together, the results of this thesis reveal the mechanism of the crosstalk between the Hippo signaling pathway and the MMB complex in the heart and form the basis for interference with the oncogenic activity of the Hippo coactivator YAP.}, subject = {Zellzyklus}, language = {en} } @phdthesis{Kortmann2022, author = {Kortmann, Mareike}, title = {Biodiversity and recreation - Optimizing tourism and forest management in forests affected by bark beetles}, doi = {10.25972/OPUS-24031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240317}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Forests are multi-functional system, which have to fulfil different objectives at the same time. The main functions include the production of wood, storage of carbon, the promotion of biological diversity and the provision of recreational space. Yet, global forests are affected by large and intense natural disturbances, like bark beetle infestations. While natural disturbances threaten wood production and are perceived as 'catastrophe' diminishing recreational value, biodiversity can benefit from the disturbance-induced changes in forest structures. This trade-off poses a dilemma to managers of bark beetle affected stands, particularly in protected areas designated to both nature conservation and recreation. Forest landscapes need a sustainable management concept aligning these different objectives. In order to support this goal with scientific knowledge, the aim of this work is to analyse ecological and social effects along a gradient of different disturbance severities. In this context, I studied the effects of a disturbance severity gradient on the diversity of different taxonomic groups including vascular plants, mosses, lichens, fungi, arthropods and birds in five national parks in Central Europe. To analyse the recreational value of the landscape I conducted visitor surveys in the same study areas in which the biodiversity surveys were performed. To analyse possible psychological or demographic effects on preferences for certain disturbance intensities, an additional online survey was carried out.}, subject = {Borkenk{\"a}fer}, language = {en} } @phdthesis{FadlElMola2003, author = {Fadl El Mola, Faisal Mohamed}, title = {Bioinformatic and molecular approaches for the analysis of the retinal pigment epithelium (RPE) transcriptome}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6877}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {There is substantial interest in the identification of genes underlying susceptibility to complex human diseases because of the potential utility of such genes in disease prediction and therapy. The complex age-related macular degeneration (AMD) is a prevalent cause of legal blindness in industrialized countries and predominantly affects the elderly population over 75 years of age. Although vision loss in AMD results from photoreceptor cell death in the central retina, the initial pathogenesis likely involves processes in the retinal pigment epithelium (RPE) (Liang and Godley, 2003). The goal of the current study was to identify and characterize genes specifically or abundantly expressed in the RPE in order to determine more comprehensively the transcriptome of the RPE. In addition, our aim was to assess the role of these genes in AMD pathogenesis. Towards this end, a bovine cDNA library enriched for RPE transcripts was constructed in-house using a PCR-based suppression subtractive hybridization (SSH) technique (Diatchenko et al., 1996, 1999), which normalizes for sequence abundance and achieves high enrichment for differentially expressed genes. CAP3 (Huang and Madan, 1999) was used to assemble the high quality sequences of all the 2379 ESTs into clusters or singletons. 1.2\% of the 2379 RPE-ESTs contains vector sequences and was excluded from further analysis. 5\% of the RPE-ESTs showed homology to multipe chromosomes and were not included in further assembly process. The rest of the ESTs (2245) were assembled into 175 contigs and 509 singletons, which revealed approximately 684 unique genes in the dataset. Out of the 684, 343 bovine RPE transcripts did not align to their human orthologues. A large fraction of clones were shown to include a considerable 3´untranslated regions of the gene that are not conserved between bovine and human. It is the coding regions that can be conserved between bovine and human and not the 3' UTR (Sharma et al., 2002). Therefore, more sequencing from the cDNA library with reclustering of those 343 ESTs together with continuous blasting might reveal their human orthologoues. To handle the large volume of data that the RPE cDNA library project has generated a highly efficient and user-friendly RDBMS was designed. Using RDBMS data storage can be managed efficiently and flexibly. The RDBMS allows displaying the results in query-based form and report format with additional annotations, links and search functions. Out of the 341 known and predicted genes identified in this study, 2 were further analyzed. The RPE or/and retina specificity of these two clones were further confirmed by RT-PCR analysis in adult human tissues. Construction of a single nucleotide polymphism (SNP) map was initiated as a first step in future case/control association studies. SNP genotyping was carried out for one of these two clones (RPE01-D2, now known as RDH12). 12 SNPs were identified from direct sequencing of the 23.4-kb region, of which 5 are of high frequency. In a next step, comparison of allele frequencies between AMD patients and healthy controls is required. Completion of the expression analysis for other predicted genes identified during this study is in progress using real time RT-PCR and will provide additional candidate genes for further analyses. This study is expected to contribute to our understanding of the genetic basis of RPE function and to clarify the role of the RPE-expressed genes in the predisposition to AMD. It may also help reveal the mechanisms and pathways that are involved in the development of AMD or other retinal dystrophies.}, subject = {Senile Makuladegeneration}, language = {en} } @phdthesis{Blenk2007, author = {Blenk, Steffen}, title = {Bioinformatical analysis of B-cell lymphomas}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27421}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Background: The frequency of the most observed cancer, Non Hodgkin Lymphoma (NHL), is further rising. Diffuse large B-cell lymphoma (DLBCL) is the most common of the NHLs. There are two subgroups of DLBCL with different gene expression patterns: ABC ("Activated B-like DLBCL") and GCB ("Germinal Center B-like DLBCL"). Without therapy the patients often die within a few months, the ABC type exhibits the more aggressive behaviour. A further B-cell lymphoma is the Mantle cell lymphoma (MCL). It is rare and shows very poor prognosis. There is no cure yet. Methods: In this project these B-cell lymphomas were examined with methods from bioinformatics, to find new characteristics or undiscovered events on the molecular level. This would improve understanding and therapy of lymphomas. For this purpose we used survival, gene expression and comparative genomic hybridization (CGH) data. In some clinical studies, you get large data sets, from which one can reveal yet unknown trends. Results (MCL): The published proliferation signature correlates directly with survival. Exploratory analyses of gene expression and CGH data of MCL samples (n=71) revealed a valid grouping according to the median of the proliferation signature values. The second axis of correspondence analysis distinguishes between good and bad prognosis. Statistical testing (moderate t-test, Wilcoxon rank-sum test) showed differences in the cell cycle and delivered a network of kinases, which are responsible for the difference between good and bad prognosis. A set of seven genes (CENPE, CDC20, HPRT1, CDC2, BIRC5, ASPM, IGF2BP3) predicted, similarly well, survival patterns as proliferation signature with 20 genes. Furthermore, some bands could be associated with prognosis in the explorative analysis (chromosome 9: 9p24, 9p23, 9p22, 9p21, 9q33 and 9q34). Results (DLBCL): New normalization of gene expression data of DLBCL patients revealed better separation of risk groups by the 2002 published signature based predictor. We could achieve, similarly well, a separation with six genes. Exploratory analysis of gene expression data could confirm the subgroups ABC and GCB. We recognized a clear difference in early and late cell cycle stages of cell cycle genes, which can separate ABC and GCB. Classical lymphoma and best separating genes form a network, which can classify and explain the ABC and GCB groups. Together with gene sets which identify ABC and GCB we get a network, which can classify and explain the ABC and GCB groups (ASB13, BCL2, BCL6, BCL7A, CCND2, COL3A1, CTGF, FN1, FOXP1, IGHM, IRF4, LMO2, LRMP, MAPK10, MME, MYBL1, NEIL1 and SH3BP5; Altogether these findings are useful for diagnosis, prognosis and therapy (cytostatic drugs).}, subject = {Bioinformatik}, language = {en} } @phdthesis{Zeeshan2012, author = {Zeeshan, Ahmed}, title = {Bioinformatics Software for Metabolic and Health Care Data Management}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73926}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Computer Science approaches (software, database, management systems) are powerful tools to boost research. Here they are applied to metabolic modelling in infections as well as health care management. Starting from a comparative analysis this thesis shows own steps and examples towards improvement in metabolic modelling software and health data management. In section 2, new experimental data on metabolites and enzymes induce high interest in metabolic modelling including metabolic flux calculations. Data analysis of metabolites, calculation of metabolic fluxes, pathways and their condition-specific strengths is now possible by an advantageous combination of specific software. How can available software for metabolic modelling be improved from a computational point of view? A number of available and well established software solutions are first discussed individually. This includes information on software origin, capabilities, development and used methodology. Performance information is obtained for the compared software using provided example data sets. A feature based comparison shows limitations and advantages of the compared software for specific tasks in metabolic modeling. Often found limitations include third party software dependence, no comprehensive database management and no standard format for data input and output. Graphical visualization can be improved for complex data visualization and at the web based graphical interface. Other areas for development are platform independency, product line architecture, data standardization, open source movement and new methodologies. The comparison shows clearly space for further software application development including steps towards an optimal user friendly graphical user interface, platform independence, database management system and third party independence especially in the case of desktop applications. The found limitations are not limited to the software compared and are of course also actively tackled in some of the most recent developments. Other improvements should aim at generality and standard data input formats, improved visualization of not only the input data set but also analyzed results. We hope, with the implementation of these suggestions, metabolic software applications will become more professional, cheap, reliable and attractive for the user. Nevertheless, keeping these inherent limitations in mind, we are confident that the tools compared can be recommended for metabolic modeling for instance to model metabolic fluxes in bacteria or metabolic data analysis and studies in infection biology. ...}, subject = {Stoffwechsel}, language = {en} } @phdthesis{Kuhlemann2022, author = {Kuhlemann, Alexander}, title = {Bioorthogonal labeling of neuronal proteins using super-resolution fluorescence microscopy}, doi = {10.25972/OPUS-24373}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243731}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The synaptic cleft is of central importance for synaptic transmission, neuronal plasticity and memory and thus well studied in neurobiology. To target proteins of interest with high specificity and strong signal to noise conventional immunohistochemistry relies on the use of fluorescently labeled antibodies. However, investigations on synaptic receptors remain challenging due to the defined size of the synaptic cleft of ~20 nm between opposing pre- and postsynaptic membranes. At this limited space, antibodies bear unwanted side effects such as crosslinking, accessibility issues and a considerable linkage error between fluorophore and target of ~10 nm. With recent single molecule localization microscopy (SMLM) methods enabling localization precisions of a few nanometers, the demand for labeling approaches with minimal linkage error and reliable recognition of the target molecules rises. Within the scope of this work, different labeling techniques for super-resolution fluorescence microscopy were utilized allowing site-specific labeling of a single amino acid in synaptic proteins like kainate receptors (KARs), transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor regulatory proteins (TARPs), γ-aminobutyric acid type A receptors (GABA-ARs) and neuroligin 2 (NL2). The method exploits the incorporation of unnatural amino acids (uAAs) in the protein of interest using genetic code expansion (GCE) via amber suppression technology and subsequent labeling with tetrazine functionalized fluorophores. Implementing this technique, hard-to-target proteins such as KARs, TARPs and GABA-ARs could be labeled successfully, which could only be imaged insufficiently with conventional labeling approaches. Furthermore, functional studies involving electrophysiological characterization, as well as FRAP and FRET experiments validated that incorporation of uAAs maintains the native character of the targeted proteins. Next, the method was transferred into primary hippocampal neurons and in combination with super-resolution microscopy it was possible to resolve the nanoscale organization of γ2 and γ8 TARPs. Cluster analysis of dSTORM localization data verified synaptic accumulation of γ2, while γ8 was homogenously distributed along the neuron. Additionally, GCE and bioorthogonal labeling allowed visualization of clickable GABA-A receptors located at postsynaptic compartments in dissociated hippocampal neurons. Moreover, saturation experiments and FRET imaging of clickable multimeric receptors revealed successful binding of multiple tetrazine functionalized fluorophores to uAA-modified dimeric GABA-AR α2 subunits in close proximity (~5 nm). Further utilization of tetrazine-dyes via super-resolution microscopy methods such as dSTORM and click-ExM will provide insights to subunit arrangement in receptors in the future. This work investigated the nanoscale organization of synaptic proteins with minimal linkage error enabling new insights into receptor assembly, trafficking and recycling, as well as protein-protein interactions at synapses. Ultimately, bioorthogonal labeling can help to understand pathologies such as the limbic encephalitis associated with GABA-AR autoantibodies and is already in application for cancer therapies.}, subject = {microscopy}, language = {en} } @phdthesis{Muellner2004, author = {M{\"u}llner, Antje}, title = {Breeding ecology and related life-history traits of the hoatzin, Opisthocomus hoazin, in a primary rainforest habitat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13239}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {The hoatzin (Opisthocomus hoazin) is an enigmatic bird that lives in the riparian lowlands of northern South America. Among its peculiar attributes are 1) microbial foregut fermentation, unique in birds, to convert plant cellulose in the foliage which it consumes into simple sugars, 2) an ongoing debate about the puzzling taxonomic position, although a relationship to the Cuculiformes appears likely, 3) adaptive wing claws in the young which are used for climbing, and 4) co-operative breeding behaviour. Despite the information available on digestive mode and taxonomy little has been published on its breeding biology and behaviour and until now almost all knowledge was based on a study in the savannah of Venezuela. This is the first detailed study of the hoatzin's nesting ecology in a rainforest habitat. From 1995-1998 and in 2000 I monitored a hoatzin population which consisted of approximately 700 individuals in an Amazonian rainforest in Ecuador situated in the Cuyabeno Wildlife Reserve (between 0°02' N, 76°0' W, 0°03' S, and 76°14' W). The area is composed of various black water lagoons and small rivers, flooded forests and terra firme forest. Primarily, I examined group composition and breeding pattern and success related to traits such as clutch and egg size, offspring sex ratio and the number of parents involved in a common breeding attempt. Apart from standardised observations and monitoring I took blood samples from chicks, which were later used for molecular sexing and for DNA fingerprints. Food plants were collected and determined and a rough habitat mapping was conducted. Since the impacts of boat tourism in the area became apparent I investigated the interactions of adult and young hoatzins with tourists and measured the plasma concentration of the hormone corticosterone in chicks as an indicator of stress. Each chapter has its own introduction to the specific topic and can be read independently. The main findings of this study are: The reproduction of the hoatzin was timed strictly following the bimodal rainy pattern in the area. There was only one breeding attempt per year. Only 18\% of breeding attempts ended successfully with at least one fledgling. Incubation started with the first egg laid and led to hatching asynchrony. In most cases only the A-chick survived and there is evidence for a brood reduction strategy. I observed egg size variation patterns both within the clutches and between the clutches. Approximately 80\% of breeding attempts were carried out with auxiliaries. Units with alloparentals had a higher breeding success than single pairs. The results indicate a trade-off between helping and group size. DNA band-sharing comparisons revealed the existence of joint-nests, where several females laid their eggs in one single nest. The clutches of these joint-nests suffered severe egg loss during all stages of incubation. Breeding success did not differ between single- and joint-nests. The primary offspring sex ratio was biased towards daughters. There was no differential mortality between the sexes until fledging. Individual breeding units employed an adaptive production of offspring of each sex according to their current group size. Rainforest tourism negatively influenced the survival and growth of young, not yet fledged hoatzins. In addition tourist-exposed young showed a stronger hormonal stress response than their conspecifics from undisturbed sites. In contrast, breeding adults appear to have habituated to tourist boats and exposure to observers.}, subject = {Hoatzins}, language = {en} } @phdthesis{Halboth2018, author = {Halboth, Florian}, title = {Building behavior and nest climate control in leaf-cutting ants: How environmental cues affect the building responses of workers of \(Atta\) \(vollenweideri\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161701}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The present work investigates the influence of environmental stimuli on the building behavior of workers of the leaf-cutting ant Atta vollenweideri. It focuses on cues related to the airflow-driven ventilation of their giant underground nests, i.e., air movements and their direction, carbon dioxide concentrations and humidity levels of the nest air. First, it is shown that workers are able to use airflow and its direction as learned orientation cue by performing learning experiments with individual foragers using a classical conditioning paradigm. This ability is expected to allow workers to also navigate inside the nest tunnels using the prevailing airflow directions for orientation, for example during tasks related to nest construction and climate control. Furthermore, the influence of carbon dioxide on the digging behavior of workers is investigated. While elevated CO2 levels hardly affect the digging rate of the ants, workers prefer to excavate at locations with lower concentrations and avoid higher CO2 levels when given a choice. Under natural conditions, shifting their digging activity to soil layers containing lower carbon dioxide levels might help colonies to excavate new or to broaden existing nest openings, if the CO2 concentration in the underground rises. It is also shown that workers preferably transport excavated soil along tunnels containing high CO2 concentrations, when carbon dioxide levels in the underground are elevated as well. In addition, workers prefer to carry soil pellets along outflow tunnels instead of inflow tunnels, at least for high humidity levels of the air. The material transported along tunnels providing outflow of CO2-rich air might be used by workers for the construction of ventilation turrets on top of the nest mound, which is expected to promote the wind-induced ventilation and the removal of carbon dioxide from the underground. The climatic conditions inside the nest tunnels also influence the structural features of the turrets constructed by workers on top the nest. While airflow and humidity have no effect on turret structure, outflow of CO2-rich air from the nest causes workers to construct turrets with additional openings and increased aperture, potentially enhancing the airflow-driven gas exchanges within the nest. Finally, the effect of airflow and ventilation turrets on the gas exchanges in Atta vollenweideri nests is tested experimentally on a physical model of a small nest consisting of a single chamber and two nest tunnels. The carbon dioxide clearance rate from the underground was measured depending on both the presence of airflow in the nest and the structural features of the built turrets. Carbon dioxide is removed faster from the physical nest model when air moves through the nest, confirming the contribution of wind-induced flow inside the nest tunnels to the ventilation of Atta vollenweideri nests. In addition, turrets placed on top of one of the tunnel openings of the nest further enhance the CO2 clearance rate and the effect is positively correlated with turret aperture. Taken together, climatic variables like airflow, carbon dioxide and humidity levels strongly affect the building responses of Atta vollenweideri leaf-cutting ants. Workers use these environmental stimuli as orientation cue in the nest during tasks related to excavation, soil transport and turret construction. Although the effects of these building responses on the microclimatic conditions inside the nest remain elusive so far, the described behaviors are expected to allow ant colonies to restore and maintain a proper nest climate in the underground.}, subject = {Verhalten}, language = {en} } @phdthesis{BollazziSosa2008, author = {Bollazzi Sosa, Leonardo Martin}, title = {Building behaviour and the control of nest climate in Acromyrmex leaf-cutting ants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27610}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {This work was aimed at experimentally studying whether climatic variables act as environmental cues for workers' building behaviour in leaf-cutting ants of the genus Acromyrmex, and to what extent building responses account for the maintenance of nest climate in a proper range for the inhabiting colony. Specifically, this work presents independent analysis in different Acromyrmex species with disparate ecology and nesting habits, aimed at understanding to what extent: i) temperature and humidity act as cues for workers' building behaviour, ii) inter- and intraspecific differences in the nesting habits observed in South American Acromyrmex are based on distinct building behaviours and on the variation in regional climate across continent, iii) differences in nest architecture account for the maintenance of nest climate in a proper range for colony members and, iv) climatic variables trigger building responses aimed at controlling short-term changes in nest climate. It is first experimentally shown that soil temperature acts as a cue for workers' digging behaviour. Acromyrmex lundi workers were observed to respond to both soil temperature as well as its changes, and to decide accordingly where to start or whether to stop digging. The soil temperature range preferred by workers to dig, between 20°C and maximally 30.6°C, matches the range at which colony growth is expected to be maximized. Temperature-sensitive digging might therefore lead to the establishment of the fungus chambers in soil layers with a proper range of temperatures for colony growth. Based on that, it was hypothesized that nest depth in Acromyrmex largely depends on the depth at which this temperature range is located across the soil profile, i.e., the higher the temperature in the superficial soil layers, the deeper the nest location, since soil temperature decreases with increasing depth. A bibliographic survey on nesting habits of 21 South American Acromyrmex species confirmed that the warmer the soil temperature at 50 cm depth throughout the South American continent, the higher the number of species presenting subterranean nests, compared with those inhabiting superficial nests. Temperature-sensitive digging in Acromyrmex would therefore explain the geographical distribution of nesting habits observed for this genus in the South American continent, i.e., subterranean in the northern tropical regions, and superficial in the southern temperate ones. In addition, results showed that Acromyrmex colonies from temperate regions indeed achieve thermoregulatory benefits through the determination of nest depth based on thermoregulatory needs. In sympatrically-occurring colonies of the grass-cutting ant A. heyeri, temperature inside superficial thatched nests was higher, and more suitable for colony growth, than that inside subterranean nests. This temperature surplus was even higher in spring, at the time of production of sexual brood, than in winter or summer. It was demonstrated that such temperature surplus was brought about by the low thermal diffusivity of the nest thatch, which prevents diurnal nest overheating by the incoming solar radiation, and avoids losses of the accumulated daily heat into the cold air during night, thus leading to high average nest temperatures. Although highly advantageous for colonies in terms of nest temperature, the determination of nest depth based on thermoregulatory needs may differentially affect nest ventilation and humidity depending on how nest exposition influences the exchange of nest air with the outside air. For instance, colonies with a superficial nesting habit might benefit from improved nest ventilation, but be at risk of desiccation due to their exposition and the consequent humidity losses into the dry outside air. Results demonstrated that in two Acromyrmex species, short-term regulatory building responses triggered and spatially organized by climatic variables occur, and may counteract undesired changes in internal nest humidity. Workers of the thatching grass-cutting ant A. heyeri, for instance, closed a number of nest-thatch openings as a response to desiccation of the outside air, even at a nest temperature that otherwise triggered the response of opening them so as to reduce nest temperature. In the leaf-cutting ant A. ambiguus, the direction of the airflow inside nest tunnels was shown to act as a cue for spatially guiding the building behaviour of plugging nest entrances. However, workers only responded if the humidity content of the circulating air was low, trading therefore nest ventilation for humidity maintenance.}, subject = {Verhaltens{\"o}kologie}, language = {en} } @phdthesis{Scholl2015, author = {Scholl, Christina}, title = {Cellular and molecular mechanisms contributing to behavioral transitions and learning in the honeybee}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115527}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The honeybee Apis mellifera is a social insect well known for its complex behavior and the ability to learn tasks associated with central place foraging, such as visual navigation or to learn and remember odor-reward associations. Although its brain is smaller than 1mm² with only 8.2 x 105 neurons compared to ~ 20 x 109 in humans, bees still show amazing social, cognitive and learning skills. They express an age - related division of labor with nurse bees staying inside the hive and performing tasks like caring for the brood or cleaning, and foragers who collect food and water outside the hive. This challenges foragers with new responsibilities like sophisticated navigation skills to find and remember food sources, drastic changes in the sensory environment and to communicate new information to other bees. Associated with this plasticity of the behavior, the brain and especially the mushroom bodies (MBs) - sensory integration and association centers involved in learning and memory formation - undergo massive structural and functional neuronal alterations. Related to this background my thesis on one hand focuses on neuronal plasticity and underlying molecular mechanisms in the MBs that accompany the nurse - forager transition. In the first part I investigated an endogenous and an internal factor that may contribute to the nurse - forager phenotype plasticity and the correlating changes in neuronal network in the MBs: sensory exposure (light) and juvenile hormone (JH). Young bees were precociously exposed to light and subsequently synaptic complexes (microglomeruli, MG) in the MBs or respectively hemolymph juvenile hormone (JH) levels were quantified. The results show that light input indeed triggered a significant decrease in MG density, and mass spectrometry JH detection revealed an increase in JH titer. Interestingly light stimulation in young bees (presumably nurse bees) triggered changes in MG density and JH levels comparable to natural foragers. This indicates that both sensory stimuli as well as the endocrine system may play a part in preparing bees for the behavioral transition to foraging. Considering a connection between the JH levels and synaptic remodeling I used gene knockdown to disturb JH pathways and artificially increase the JH level. Even though the knockdown was successful, the results show that MG densities remained unchanged, showing no direct effect of JH on synaptic restructuring. To find a potential mediator of structural synaptic plasticity I focused on the calcium-calmodulin-dependent protein kinase II (CaMKII) in the second part of my thesis. CaMKII is a protein known to be involved in neuronal and behavioral plasticity and also plays an important part in structural plasticity reorganizing synapses. Therefore it is an interesting candidate for molecular mechanisms underlying MG reorganization in the MBs in the honeybee. Corresponding to the high abundance of CaMKII in the learning center in vertebrates (hippocampus), CaMKII was shown to be enriched in the MBs of the honeybee. Here I first investigated the function of CaMKII in learning and memory formation as from vertebrate work CaMKII is known to be associated with the strengthening of synaptic connections inducing long term potentiation and memory formation. The experimental approach included manipulating CaMKII function using 2 different inhibitors and a specific siRNA to create a CaMKII knockdown phenotype. Afterwards bees were subjected to classical olfactory conditioning which is known to induce stable long-term memory. All bees showed normal learning curves and an intact memory acquisition, short-term and mid-term memory (1 hour retention). However, in all cases long-term memory formation was significantly disrupted (24 and 72 hour retention). These results suggests the necessity of functional CaMKII in the MBs for the induction of both early and late phases of long-term memory in honeybees. The neuronal and molecular bases underlying long-term memory and the resulting plasticity in behavior is key to understanding higher brain function and phenotype plasticity. In this context CaMKII may be an important mediator inducing structural synaptic and neuronal changes in the MB synaptic network.}, subject = {Biene}, language = {en} } @phdthesis{Reinboth2012, author = {Reinboth, Jennifer}, title = {Cellular Factors Contributing to Host Cell Permissiveness in Support of Oncolytic Vaccinia Virus Replication}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85392}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In initial experiments, the well characterized VACV strain GLV-1h68 and three wild-type LIVP isolates were utilized to analyze gene expression in a pair of autologous human melanoma cell lines (888-MEL and 1936 MEL) after infection. Microarray analyses, followed by sequential statistical approaches, characterized human genes whose transcription is affected specifically by VACV infection. In accordance with the literature, those genes were involved in broad cellular functions, such as cell death, protein synthesis and folding, as well as DNA replication, recombination, and repair. In parallel to host gene expression, viral gene expression was evaluated with help of customized VACV array platforms to get better insight over the interplay between VACV and its host. Our main focus was to compare host and viral early events, since virus genome replication occurs early after infection. We observed that viral transcripts segregated in a characteristic time-specific pattern, consistent with the three temporal expression classes of VACV genes, including a group of genes which could be classified as early-stage genes. In this work, comparison of VACV early replication and respective early gene transcription led to the identification of seven viral genes whose expression correlated strictly with replication. We considered the early expression of those seven genes to be representative for VACV replication and we therefore referred to them as viral replication indicators (VRIs). To explore the relationship between host cell transcription and viral replication, we correlated viral (VRI) and human early gene expression. Correlation analysis revealed a subset of 114 human transcripts whose early expression tightly correlated with early VRI expression and thus early viral replication. These 114 human molecules represented an involvement in broad cellular functions. We found at least six out of 114 correlates to be involved in protein ubiquitination or proteasomal function. Another molecule of interest was the serine-threonine protein kinase WNK lysine-deficient protein kinase 1 (WNK1). We discovered that WNK1 features differences on several molecular biological levels associated with permissiveness to VACV infection. In addition to that, a set of human genes was identified with possible predictive value for viral replication in an independent dataset. A further objective of this work was to explore baseline molecular biological variances associated with permissiveness which could help identifying cellular components that contribute to the formation of a permissive phenotype. Therefore, in a subsequent approach, we screened a set of 15 melanoma cell lines (15-MEL) regarding their permissiveness to GLV-1h68, evaluated by GFP expression levels, and classified the top four and lowest four cell lines into high and low permissive group, respectively. Baseline gene transcriptional data, comparing low and highly permissive group, suggest that differences between the two groups are at least in part due to variances in global cellular functions, such as cell cycle, cell growth and proliferation, as well as cell death and survival. We also observed differences in the ubiquitination pathway, which is consistent with our previous results and underlines the importance of this pathway in VACV replication and permissiveness. Moreover, baseline microRNA (miRNA) expression between low and highly permissive group was considered to provide valuable information regarding virus-host co-existence. In our data set, we identified six miRNAs that featured varying baseline expression between low and highly permissive group. Finally, copy number variations (CNVs) between low and highly permissive group were evaluated. In this study, when investigating differences in the chromosomal aberration patterns between low and highly permissive group, we observed frequent segmental amplifications within the low permissive group, whereas the same regions were mostly unchanged in the high group. Taken together, our results highlight a probable correlation between viral replication, early gene expression, and the respective host response and thus a possible involvement of human host factors in viral early replication. Furthermore, we revealed the importance of cellular baseline composition for permissiveness to VACV infection on different molecular biological levels, including mRNA expression, miRNA expression, as well as copy number variations. The characterization of human target genes that influence viral replication could help answering the question of host cell response to oncolytic virotherapy and provide important information for the development of novel recombinant vaccinia viruses with improved features to enhance replication rate and hence trigger therapeutic outcome.}, subject = {Vaccinia-Virus}, language = {en} } @phdthesis{Blume2009, author = {Blume, Constanze}, title = {Cellular functions of VASP phosphorylations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48321}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Members of the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family are important regulators of the actin cytoskeleton dynamics. VASP functions as well as its interactions with other proteins are regulated by phosphorylation at three sites - serine157 (S157), serine239 (S239), and threonine278 (T278) in humans. cAMP- and cGMP- dependent protein kinases phosphorylate S157 and S239, respectively. In contrast, the kinase responsible for T278 was as yet unknown and identified in the first part of this thesis. In a screen for T278 phosphorylating kinases using a phospho-specific antibody against phosphorylated T278 AMP-activated protein kinase (AMPK) was identified in endothelial cells. Mutants of AMPK with altered kinase-activity modulate T278-phosphorylation levels in cells. AMPK-driven T278-phosphorylation impaired stress fiber formation and changed cell morphology in living cells. AMPK is a fundamental sensor of cellular and whole body energy homeostasis. Zucker Diabetic Fatty (ZDF) rats, which are an animal model for type II diabetes mellitus, were used to analyze the impact of phosphorylated T278 in vivo. AMPK-activity and T278-phosphorylation were substantially reduced in arterial vessel walls of ZDF rats in comparison to control animals. These findings demonstrate that VASP is a new AMPK substrate, that VASP phosphorylation mediates the effects of metabolic regulation on actin cytoskeleton rearrangements, and that this signaling system becomes down-regulated in diabetic vessel disorders in rats. In the second part of this thesis, a functional analysis of differential VASP phosphorylations was performed. To systematically address VASP phosphorylation patterns, a set of VASP phosphomimetic mutants was cloned. These mutants enable the mimicking of defined phosphorylation patterns and the specific analysis of single kinase-mediated phosphorylations. VASP localization to the cell periphery was increased by S157- phosphorylation and modulated by phosphorylation at S239 and T278. Latter phosphorylations synergistically reduced actin polymerization. In contrast, S157- phosphorylation had no effect on actin-dynamics. Taken together, the results of the second part show that phosphorylation of VASP serves as a fine regulator of localization and actin polymerization activity. In summary, this study revealed the functions of VASP phosphorylations and established novel links between signaling pathways and actin cytoskeleton rearrangement.}, subject = {Vasodilatator-stimuliertes Phosphoprotein}, language = {en} }