@article{HoppeFriedlSchaireretal.1983, author = {Hoppe, J. and Friedl, P. and Schairer, H. U. and Sebald, Walter and Meyenburg, K. von and Jorgensen, B. B.}, title = {The topology of the proton translocating F\(_0\) component of the ATP synthase from E. coli K12: studies with proteases}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62718}, year = {1983}, abstract = {The accessibility of the three F\(_0\) subunits a, b and c from the Escherichia coli Kll A TP synthase to various proteases was studied in F\(_1\)-depleted inverted membrane vesicles. Subunit b was very sensitive to all applied proteases. Chymotrypsin produced a defined fragment of mol. wt. 1S 000 which remained tightly bound to the membrane. The cleavage site was located at the C-terminal region of subunit b. Larger amounts of proteases were necessary to attack subunit a (mol. wt. 30 000). There was no detectable deavage of subunit c. It is suggested that the major hydrophilic part of subunit b extends from the membrane into the cytoplasm and is in contact with the F\(_1\) sector. The F\(_1\) sector was found to afford some protection against proteolysis oftheb subunit in vitro andin vivo. Protease digestion bad no influence on the electro-impelled H\(^+\) conduction via F\(_0\) bot ATP-dependent H\(^+\) translocation could not be reconstituted upon binding of F\(_1\)• A possible role for subunit b as a linker between catalytic events on the F\(_1\) component and the proton pathway across the membrane is discussed.}, subject = {Biochemie}, language = {en} } @article{HopfenmuellerSteffanDewenterHolzschuh2014, author = {Hopfenmueller, Sebastian and Steffan-Dewenter, Ingolf and Holzschuh, Andrea}, title = {Trait-Specific Responses of Wild Bee Communities to Landscape Composition, Configuration and Local Factors}, doi = {10.1371/journal.pone.0104439}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112872}, year = {2014}, abstract = {Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes). Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees) were positively affected by landscape composition (high percentage of semi-natural habitats). Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales.}, language = {en} } @article{HongWinklerBremetal.1993, author = {Hong, Yunhan and Winkler, Christoph and Brem, Gottfried and Schartl, Manfred}, title = {Development of a heavy metal-inducible fish-specific expression vector for gene transfer in vitro and in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61666}, year = {1993}, abstract = {The promoter of the rainbow trout metallothionein B gene ( tMTb) was isolated from genomic DNA by the polymerase chain reaction (PCR ), fused to the bacterial chloramphenicol acetyltransferase (CAT) genein an expression vector, and functionally analyzed in one human cellline and four fish celllines. This promoter exhibited an extremely low basal expression in all celllines and was zincand cadmium-inducible except in the fish melanoma cell line where the promoter was completely inactive. The metal-induced expression patterns were cellline-specific. In general the fish promoter was more species- and cell type-specific than its human counterpart. In a transient assay it was functional in developing embryos of the medaka ( Oryzias /atipes). These properties make this promoter suitable for inducible, tissue-specific expression of transgenes and for in vivo studies of gene function and regulation.}, subject = {Physiologische Chemie}, language = {en} } @article{HongSchartl1993, author = {Hong, Yunhan and Schartl, Manfred}, title = {Sequence of the growth hormone (GH) gene from the silver carp (Hypophthalmichthys molitrix) and evolution of GH genes in vertebrates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61620}, year = {1993}, abstract = {The silver carp (Hypophthalmichthys molitrix) growth hormone (GH) genewas isolated and sequenced following amplification from genomic DNA by the polymerase chain reaction. The gene spans a region of approx. 2.5 kb nucleotides (nt) and consists of five exons. The sequence predicts a polypeptide of 210 amino acids (aa) including a putative signal peptide of 22 hydrophobic aa residues. The arrangement of exons and introns is identical to the GH genes of common carp, grass carp, and very similar to mammals and birds, but quite different from that for the GH genes of tilapia and salmonids. The silver carp GH gene shares a high homology at the nt and aa Ievels with those of grass carp (95.3\% nt, 99.5\% aa) and of common carp (81\% nt, 95.7\% aa).}, subject = {Physiologische Chemie}, language = {en} } @article{HongSchartl1992, author = {Hong, Yunhan and Schartl, Manfred}, title = {Structure of the rainbow trout metallothionein A gene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61679}, year = {1992}, abstract = {To investigate the regulation of metallothionein-encoding genes in fish, we have isolated and sequenced the rainbow trout metallothionein-A-encoding gene (tMT-A) by polymerase chain reaction. This gene spans about 1.1 kb, consists of three exons and two introns, and has an A+ T-rieb 5' -region which contains a TATAAA signal, and two metal responsive elements (MREs). The transcription start point is centered around an A residue 81 nt upstream of the ATG codon.}, subject = {Physiologische Chemie}, language = {en} } @phdthesis{Hondke2014, author = {Hondke, Sylvia}, title = {Elucidation of WISP3 function in human mesenchymal stem cells and chondrocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-109641}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {WISP3 is a member of the CCN family which comprises six members found in the 1990's: Cysteine-rich,angiogenic inducer 61 (CYR61, CCN1), Connective tissue growth factor (CTGF, CCN2), Nephroblastoma overexpressed (NOV, CNN3) and the Wnt1 inducible signalling pathway protein 1-3 (WISP1-3, CCN4-6).They are involved in the adhesion, migration, mitogenesis, chemotaxis, proliferation, cell survival, angiogenesis, tumorigenesis, and wound healing by the interaction with different integrins and heparan sulfate proteoglycans. Until now the only member correlated to the musculoskeletal autosomal disease Progressive Pseudorheumatoid Dysplasia (PPD) is WISP3. PPD is characterised by normal embryonic development followed by cartilage degradation over time starting around the age of three to eight years. Animal studies in mice exhibited no differences between knock out or overexpression compared to wild type litter mates, thus were not able to reproduce the symptoms observed in PPD patients. Studies in vitro and in vivo revealed a role for WISP3 in antagonising BMP, IGF and Wnt signalling pathways. Since most of the knowledge of WISP3 was gained in epithelial cells, cancer cells or chondrocyte cell lines, we investigated the roll of WISP3 in primary human mesenchymal stem cells (hMSCs) as well as primary chondrocytes. WISP3 knock down was efficiently established with three short hairpin RNAs in both cell types, displaying a change of morphology followed by a reduction in cell number. Simultaneous treatment with recombinant WISP3 was not enough to rescue the observed phenotype nor increase the endogenous expression of WISP3. We concluded that WISP3 acts as an essential survival factor, where the loss resulted in the passing of cell cycle control points followed by apoptosis. Nevertheless, Annexin V-Cy3 staining and detection of active caspases by Western blot and immunofluorescence staining detected no clear evidence for apoptosis. Furthermore, the gene expression of the death receptors TRAILR1 and TRAILR2,important for the extrinsic activation of apoptosis, remained unchanged during WISP3 mRNA reduction. Autophagy as cause of cell death was also excluded, given that the autophagy marker LC3 A/B demonstrated to be uncleaved in WISP3-deficient hMSCs. To reveal correlated signalling pathways to WISP3 a whole genome expression analyses of WISP3-deficient hMSCs compared to a control (scramble) was performed. Microarray analyses exhibited differentially regulated genes involved in cell cycle control, adhesion, cytoskeleton and cell death. Cell death observed by WISP3 knock down in hMSCs and chondrocytes might be explained by the induction of necroptosis through the BMP/TAK1/RIPK1 signalling axis. Loss of WISP3 allows BMP to bind its receptor activating the Smad 2/3/4 complex which in turn can activate TAK1 as previously demonstrated in epithelial cells. TAK1 is able to block caspase-dependent apoptosis thereby triggering the assembly of the necrosome resulting in cell death by necroptosis. Together with its role in cell cycle control and extracellular matrix adhesion, as demonstrated in human mammary epithelial cells, the data supports the role of WISP3 as tumor suppressor and survival factor in cells of the musculoskeletal system as well as epithelial cells.}, subject = {Knorpelzelle}, language = {en} } @phdthesis{Homola2011, author = {Homola, Gy{\"o}rgy {\´A}d{\´a}m}, title = {Functional and Microstructural MRI of the Human Brain Revealing a Cerebral Network Processing the Age of Faces}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56740}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Although age is one of the most salient and fundamental aspects of human faces, its processing in the brain has not yet been studied by any neuroimaging experiment. Automatic assessment of temporal changes across faces is a prerequisite to identifying persons over their life-span, and age per se is of biological and social relevance. Using a combination of evocative face morphs controlled for global optical flow and functional magnetic resonance imaging (fMRI), we segregate two areas that process changes of facial age in both hemispheres. These areas extend beyond the previously established face-sensitive network and are centered on the posterior inferior temporal sulcus (pITS) and the posterior angular gyrus (pANG), an evolutionarily new formation of the human brain. Using probabilistic tractography and by calculating spatial cross-correlations as well as creating minimum intersection maps between activation and connectivity patterns we demonstrate a hitherto unrecognized link between structure and function in the human brain on the basis of cognitive age processing. According to our results, implicit age processing involves the inferior temporal sulci and is, at the same time, closely tied to quantity decoding by the presumed neural systems devoted to magnitudes in the human parietal lobes. The ventral portion of Wernicke's largely forgotten perpendicular association fasciculus is shown not only to interconnect these two areas but to relate to their activations, i.e. to transmit age-relevant information. In particular, post-hoc age-rating competence is shown to be associated with high response levels in the left angular gyrus. Cortical activation patterns related to changes of facial age differ from those previously elicited by other fixed as well as changeable face aspects such as gender (used for comparison), ethnicity and identity as well as eye gaze or facial expressions. We argue that this may be due to the fact that individual changes of facial age occur ontogenetically, unlike the instant changes of gaze direction or expressive content in faces that can be "mirrored" and require constant cognitive monitoring to follow. Discussing the ample evidence for distinct representations of quantitative age as opposed to categorical gender varied over continuous androgyny levels, we suggest that particular face-sensitive regions interact with additional object-unselective quantification modules to obtain individual estimates of facial age.}, subject = {Gesicht}, language = {en} } @article{HolzschuhDormannTscharntkeetal.2013, author = {Holzschuh, Andrea and Dormann, Carsten F. and Tscharntke, Teja and Steffan-Dewenter, Ingolf}, title = {Mass-flowering crops enhance wild bee abundance}, series = {Oecologia}, volume = {172}, journal = {Oecologia}, number = {2}, doi = {dx.doi.org/10.1007/s00442-012-2515-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126852}, pages = {447-484}, year = {2013}, abstract = {Although agricultural habitats can provide enormous amounts of food resources for pollinator species, links between agricultural and (semi-)natural habitats through dispersal and foraging movements have hardly been studied. In 67 study sites, we assessed the interactions between mass-flowering oilseed rape fields and semi-natural grasslands at different spatial scales, and their effects on the number of brood cells of a solitary cavity-nesting bee. The probability that the bee Osmia bicornis colonized trap nests in oilseed rape fields increased from 12 to 59 \% when grassland was nearby, compared to fields isolated from grassland. In grasslands, the number of brood cells of O. bicornis in trap nests was 55 \% higher when adjacent to oilseed rape compared to isolated grasslands. The percentage of oilseed rape pollen in the larval food was higher in oilseed rape fields and grasslands adjacent to oilseed rape than in isolated grasslands. In both oilseed rape fields and grasslands, the number of brood cells was positively correlated with the percentage of oilseed rape pollen in the larval food. We show that mass-flowering agricultural habitats—even when they are intensively managed—can strongly enhance the abundance of a solitary bee species nesting in nearby semi-natural habitats. Our results suggest that positive effects of agricultural habitats have been underestimated and might be very common (at least) for generalist species in landscapes consisting of a mixture of agricultural and semi-natural habitats. These effects might also have—so far overlooked—implications for interspecific competition and mutualistic interactions in semi-natural habitats.}, language = {en} } @article{HolzschuhDormannTscharntkeetal.2013, author = {Holzschuh, Andrea and Dormann, Carsten F. and Tscharntke, Teja and Steffan-Dewenter, Ingolf}, title = {Mass-flowering crops enhance wild bee abundance}, series = {Oecologia}, volume = {172}, journal = {Oecologia}, number = {2}, doi = {10.1007/s00442-012-2515-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132149}, pages = {477-484}, year = {2013}, abstract = {Although agricultural habitats can provide enormous amounts of food resources for pollinator species, links between agricultural and (semi-)natural habitats through dispersal and foraging movements have hardly been studied. In 67 study sites, we assessed the interactions between mass-flowering oilseed rape fields and semi-natural grasslands at different spatial scales, and their effects on the number of brood cells of a solitary cavity-nesting bee. The probability that the bee Osmia bicornis colonized trap nests in oilseed rape fields increased from 12 to 59 \% when grassland was nearby, compared to fields isolated from grassland. In grasslands, the number of brood cells of O. bicornis in trap nests was 55 \% higher when adjacent to oilseed rape compared to isolated grasslands. The percentage of oilseed rape pollen in the larval food was higher in oilseed rape fields and grasslands adjacent to oilseed rape than in isolated grasslands. In both oilseed rape fields and grasslands, the number of brood cells was positively correlated with the percentage of oilseed rape pollen in the larval food. We show that mass-flowering agricultural habitats—even when they are intensively managed—can strongly enhance the abundance of a solitary bee species nesting in nearby semi-natural habitats. Our results suggest that positive effects of agricultural habitats have been underestimated and might be very common (at least) for generalist species in landscapes consisting of a mixture of agricultural and semi-natural habitats. These effects might also have—so far overlooked—implications for interspecific competition and mutualistic interactions in semi-natural habitats.}, language = {en} } @article{HolzschuhDaineseGonzalezVaroetal.2016, author = {Holzschuh, Andrea and Dainese, Matteo and Gonzalez-Varo, Juan P. and Mudri-Stojnic, Sonja and Riedinger, Verena and Rundl{\"o}f, Maj and Scheper, Jeroen and Wickens, Jennifer B. and Wickens, Victoria J. and Bommarco, Riccardo and Kleijn, David and Potts, Simon G. and Roberts, Stuart P. M. and Smith, Henrik G. and Vil{\`a}, Montserrat and Vujic, Ante and Steffan-Dewenter, Ingolf}, title = {Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe}, series = {Ecology Letters}, volume = {19}, journal = {Ecology Letters}, number = {10}, doi = {10.1111/ele.12657}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187356}, pages = {1228-1236}, year = {2016}, abstract = {Mass-flowering crops (MFCs) are increasingly cultivated and might influence pollinator communities in MFC fields and nearby semi-natural habitats (SNHs). Across six European regions and 2 years, we assessed how landscape-scale cover of MFCs affected pollinator densities in 408 MFC fields and adjacent SNHs. In MFC fields, densities of bumblebees, solitary bees, managed honeybees and hoverflies were negatively related to the cover of MFCs in the landscape. In SNHs, densities of bumblebees declined with increasing cover of MFCs but densities of honeybees increased. The densities of all pollinators were generally unrelated to the cover of SNHs in the landscape. Although MFC fields apparently attracted pollinators from SNHs, in landscapes with large areas of MFCs they became diluted. The resulting lower densities might negatively affect yields of pollinator- dependent crops and the reproductive success of wild plants. An expansion of MFCs needs to be accompanied by pollinator-supporting practices in agricultural landscapes.}, language = {en} } @article{HojsgaardSchartl2021, author = {Hojsgaard, Diego and Schartl, Manfred}, title = {Skipping sex: A nonrecombinant genomic assemblage of complementary reproductive modules}, series = {BioEssays}, volume = {43}, journal = {BioEssays}, number = {1}, doi = {10.1002/bies.202000111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225818}, year = {2021}, abstract = {The unusual occurrence and developmental diversity of asexual eukaryotes remain a puzzle. De novo formation of a functioning asexual genome requires a unique assembly of sets of genes or gene states to disrupt cellular mechanisms of meiosis and gametogenesis, and to affect discrete components of sexuality and produce clonal or hemiclonal offspring. We highlight two usually overlooked but essential conditions to understand the molecular nature of clonal organisms, that is, a nonrecombinant genomic assemblage retaining modifiers of the sexual program, and a complementation between altered reproductive components. These subtle conditions are the basis for physiologically viable and genetically balanced transitions between generations. Genomic and developmental evidence from asexual animals and plants indicates the lack of complementation of molecular changes in the sexual reproductive program is likely the main cause of asexuals' rarity, and can provide an explanatory frame for the developmental diversity and lability of developmental patterns in some asexuals as well as for the discordant time to extinction estimations.}, language = {en} } @phdthesis{Hoiss2013, author = {Hoiß, Bernhard}, title = {Effects of climate change, extreme events and management on plants, pollinators and mutualistic interaction networks}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87919}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {I. Climate change comprises average temperatures rise, changes in the distribution of precipitation and an increased amount and intensity of extreme climatic events in the last decades. Considering these serious changes in the abiotic environment it seems obvious that ecosystems also change. Flora and fauna have to adapt to the fast changing conditions, migrate or go extinct. This might result in shifts in biodiversity, species composition, species interactions and in ecosystem functioning and services. Mountains play an important role in the research of these climate impacts. They are hotspots of biodiversity and can be used as powerful natural experiments as they provide, within short distances, the opportunity to research changes in the ecosystem induced by different climatic contexts. In this dissertation two approaches were pursued: i) surveys of biodiversity, trait dominance and assembly rules in communities depending on the climatic context and different management regimes were conducted (chapters II and III) and ii) the effects of experimental climate treatments on essential ecosystem features along the altitudinal gradient were assessed (chapters IV, V and VI). II. We studied the relative importance of management, an altitudinal climatic gradient and their interactions for plant species richness and the dominance of pollination types in 34 alpine grasslands. Species richness peaked at intermediate temperatures and was higher in grazed grasslands compared to non-managed grasslands. We found the climatic context and also management to influence the distribution and dominance structures of wind- and insect-pollinated plants. Our results indicate that extensive grazing maintains high plant diversity over the full subalpine gradient. Rising temperatures may cause an upward shift of the diversity peak of plants and may also result in changed species composition and adaptive potential of pollination types. III. On the same alpine grasslands we studied the impact of the climatic context along an altitudinal gradient on species richness and community assembly in bee communities. Species richness and abundance declined linearly with increasing altitude. Bee species were more closely related at high altitudes than at low altitudes. The proportion of social and ground-nesting species, as well as mean body size and altitudinal range of bees, increased with increasing altitude, whereas the mean geographic distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, while the relative importance of competition increases at low altitudes. We conclude that ongoing climate change poses a threat for alpine specialists with adaptations to cool environments but low competitive capacities. IV. We determined the impacts of short-term climate events on flower phenology and assessed whether those impacts differed between lower and higher altitudes. For that we simulated advanced and delayed snowmelt as well as drought events in a multi site experiment along an altitudinal gradient. Flower phenology was strongly affected by altitude, however, this effect declined through the season. The manipulative treatments caused only few changes in flowering phenology. The effects of advanced snowmelt were significantly greater at higher than at lower sites, but altitude did not influence the effect of the other treatments. The length of flowering duration was not significantly influenced by treatments. Our data indicate a rather low risk of drought events on flowering phenology in the Bavarian Alps. V. Changes in the structure of plant-pollinator networks were assessed along an altitudinal gradient combined with the experimental simulation of potential consequences of climate change: extreme drought events, advanced and delayed snowmelt. We found a trend of decreasing specialisation and therefore increasing complexity in networks with increasing altitude. After advanced snowmelt or drought networks were more specialised especially at higher altitudes compared to control plots. Our results show that changes in the network structures after climate manipulations depend on the climatic context and reveal an increasing susceptibility of plant-pollinator networks with increasing altitude. VI. The aim of this study was to determine the combined effects of extreme climatic events and altitude on leaf CN (carbon to nitrogen) ratios and herbivory rates in different plant guilds. We found no overall effect of climate manipulations (extreme drought events, advanced and delayed snowmelt) on leaf CN ratios and herbivory rates. However, plant guilds differed in CN ratios and herbivory rates and responded differently to altitude. CN ratios of forbs (legume and non-legume) decreased with altitude, whereas CN ratios of grasses increased with altitude. Further, CN ratios and herbivory rates increased during the growing season, indicating a decrease of food plant quality during the growing season. Insect herbivory rates were driven by food plant quality. Contrasting altitudinal responses of forbs versus grasses give reason to expect changed dominance structures among plant guilds with ongoing climate change. VII. This dissertation contributes to the understanding of factors that determine the composition and biotic interactions of communities in different climates. The results presented indicate that warmer climates will not only change species richness but also the assembly-rules for plant and bee communities depending on the species' functional traits. Our investigations provide insights in the resilience of different ecosystem features and processes towards climate change and how this resilience depends on the environmental context. It seems that mutualistic interactions are more susceptible to short-term climate events than flowering phenology and antagonistic interactions such as herbivory. However, to draw more general conclusions more empirical data is needed.}, subject = {Klima{\"a}nderung}, language = {en} } @phdthesis{Hofstetter2014, author = {Hofstetter, Christine}, title = {Inhibition of H3K27me-Specific Demethylase Activity During Murine ES cell Differentiation Induces DNA Damage Response}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107023}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Stem cells are defined by their capacity to self-renew and their potential to differentiate into multiple cell lineages. Pluripotent embryonic stem (ES) cells can renew indefinitely while keeping the potential to differentiate into any of the three germ layers (ectoderm, endoderm or mesoderm). For decades, ES cells are in the focus of research because of these unique features. When ES cells differentiate they form spheroid aggregates termed "embryoid bodies" (EBs). These EBs mimic post- implantation embryonic development and therefore facilitate the understanding of developmented mechanisms. During ES cell differentiation, de-repression or repression of genes accompanies the changes in chromatin structure. In ES cells, several mechanisms are involved in the regulation of the chromatin architecture, including post-translational modifications of histones. Post-translational histone methylation marks became one of the best- investigated epigenetic modifications, and they are essential for maintaining pluripotency. Until the first histone demethylase KDM1A was discovered in 2004 histone modifications were considered to be irreversible. Since then, a great number of histone demethylases have been identified. Their activity is linked to gene regulation as well as to stem cell self-renewal and differentiation. KDM6A and KDM6B are H3K27me3/2-specific histone demethylases, which are known to play a central role in the regulation of posterior development by regulating HOX gene expression. So far less is known about the molecular function of KDM6A or KDM6B in undifferentiated and differentiating ES cells. In order to completely abrogate KDM6A and KDM6B demethylase activity in undifferentiated and differentiating ES cells, a specific inhibitor (GSK-J4) was employed. Treatment with GSK-J4 had no effect on the viability or proliferation on ES cells. However, in the presence of GSK-J4 ES cell differentiation was completely abrogated with cells arrested in G1-phase and an increased rate of apoptosis. Global transcriptome analyses in early-differentiating ES cells revealed that only a limited set of genes were differentially regulated in response to GSK-J4 treatment with more genes up- regulated than down-regulated. Many of the up-regulated genes are linked to DNA damage response (DDR). In agreement with this, DNA damage was found in EBs incubated with GSK-J4. A co-localization of H3K27me3 or KDM6B with γH2AX foci, marking DNA breaks, could be excluded. However, differentiating Eed knockout (KO) ES cells, which are devoid of the H3K27me3 mark, showed an attenuated GSK-J4- induced DDR. Finally, hematopoietic differentiation in the presence of GSK-J4 resulted in a reduced colony-forming potential. This leads to the conclusion that differentiation in the presence of GSK-J4 is also restricted to hematopoietic differentiation. In conclusion, my results show that the enzymatic activity of KDM6A and KDM6B is not essential for maintaining the pluripotent state of ES cells. In contrast, the enzymatic activity of both proteins is indispensable for ES cell and hematopoietic differentiation. Additionally KDM6A and KDM6B enzymatic inhibition in differentiating ES cells leads to increased DNA damage with an activated DDR. Therefore, KDM6A and KDM6B are associated with DNA damage and in DDR in differentiating ES cells.}, subject = {Embryonale Stammzelle}, language = {en} } @article{HofrichterMojaradDolletal.2018, author = {Hofrichter, Michaela A. H. and Mojarad, Majid and Doll, Julia and Grimm, Clemens and Eslahi, Atiye and Hosseini, Neda Sadat and Rajati, Mohsen and M{\"u}ller, Tobias and Dittrich, Marcus and Maroofian, Reza and Haaf, Thomas and Vona, Barbara}, title = {The conserved p.Arg108 residue in S1PR2 (DFNB68) is fundamental for proper hearing: evidence from a consanguineous Iranian family}, series = {BMC Medical Genetics}, volume = {19}, journal = {BMC Medical Genetics}, number = {81}, doi = {10.1186/s12881-018-0598-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175755}, year = {2018}, abstract = {Background: Genetic heterogeneity and consanguineous marriages make recessive inherited hearing loss in Iran the second most common genetic disorder. Only two reported pathogenic variants (c.323G>C, p.Arg108Pro and c.419A>G, p.Tyr140Cys) in the S1PR2 gene have previously been linked to autosomal recessive hearing loss (DFNB68) in two Pakistani families. We describe a segregating novel homozygous c.323G>A, p.Arg108Gln pathogenic variant in S1PR2 that was identified in four affected individuals from a consanguineous five generation Iranian family. Methods: Whole exome sequencing and bioinformatics analysis of 116 hearing loss-associated genes was performed in an affected individual from a five generation Iranian family. Segregation analysis and 3D protein modeling of the p.Arg108 exchange was performed. Results: The two Pakistani families previously identified with S1PR2 pathogenic variants presented profound hearing loss that is also observed in the affected Iranian individuals described in the current study. Interestingly, we confirmed mixed hearing loss in one affected individual. 3D protein modeling suggests that the p.Arg108 position plays a key role in ligand receptor interaction, which is disturbed by the p.Arg108Gln change. Conclusion: In summary, we report the third overall mutation in S1PR2 and the first report outside the Pakistani population. Furthermore, we describe a novel variant that causes an amino acid exchange (p.Arg108Gln) in the same amino acid residue as one of the previously reported Pakistani families (p.Arg108Pro). This finding emphasizes the importance of the p.Arg108 amino acid in normal hearing and confirms and consolidates the role of S1PR2 in autosomal recessive hearing loss.}, language = {en} } @article{HockMoormannFischeretal.1993, author = {Hock, Robert and Moormann, Antoon and Fischer, Dagmar and Scheer, Ulrich}, title = {Absence of somatic histone H1 in oocytes and preblastula embryos of Xenopus laevis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-41350}, year = {1993}, abstract = {Available data on the occurrence and expression of somatic histone HI during oogenesis and early embryogenesis of Xenopus laevis are contradictory. In particular the reported presence of a large storage pool of histone HIA in oocytes is difficult to reconcile with the high transcriptional activity of all gene classes in this specific cell type. In the present study we have used polyclonal antibodies raised against somatic Xenopus histone HI (HIA and HIA/B) for combined immunoblotting experiments to quantitate HI pools and immunolocalization studies to visualize chromosome- bound HI. Both approaches failed to detect soluble or chromosomal histone HI in vitellogenic oocytes, eggs, and cleavage-stage embryos up to early blastula. In addition, chromatin assembled in Xenopus egg extract was also negative for histone HI as revealed by immunofluorescence microscopy. Lampbrush chromosomes not only lacked histone HI but also the previously identified histone HI-like B4 protein (Smith et al., 1988, Genes Dev. 2,1284-1295). In contrast, chromosomes of eggs and early embryos fluoresced brightly with anti-B4 antibodies. Our results lend further support to the view that histone HI expression is developmentally regulated during Xenopus oogenesis and embryogenesis similar to what is known from other species.}, language = {en} } @article{HinesMaricHinesetal.2018, author = {Hines, Rochelle M. and Maric, Hans Michael and Hines, Dustin J. and Modgil, Amit and Panzanelli, Patrizia and Nakamura, Yasuko and Nathanson, Anna J. and Cross, Alan and Deeb, Tarek and Brandon, Nicholas J. and Davies, Paul and Fritschy, Jean-Marc and Schindelin, Hermann and Moss, Stephen J.}, title = {Developmental seizures and mortality result from reducing GABAA receptor α2-subunit interaction with collybistin}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-05481-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320719}, year = {2018}, abstract = {Fast inhibitory synaptic transmission is mediated by γ-aminobutyric acid type A receptors (GABAARs) that are enriched at functionally diverse synapses via mechanisms that remain unclear. Using isothermal titration calorimetry and complementary methods we demonstrate an exclusive low micromolar binding of collybistin to the α2-subunit of GABAARs. To explore the biological relevance of collybistin-α2-subunit selectivity, we generate mice with a mutation in the α2-subunit-collybistin binding region (Gabra2-1). The mutation results in loss of a distinct subset of inhibitory synapses and decreased amplitude of inhibitory synaptic currents. Gabra2-1 mice have a striking phenotype characterized by increased susceptibility to seizures and early mortality. Surviving Gabra2-1 mice show anxiety and elevations in electroencephalogram δ power, which are ameliorated by treatment with the α2/α3-selective positive modulator, AZD7325. Taken together, our results demonstrate an α2-subunit selective binding of collybistin, which plays a key role in patterned brain activity, particularly during development.}, language = {en} } @article{HigginsSmilinichSaitetal.1994, author = {Higgins, M. J. and Smilinich, N. J. and Sait, S. and Koenig, A. and Pongratz, J. and Gessler, Manfred and Richard III., C. W. and James, M. R. and Sanford, J. P. and Kim, B.-W. and Cattelane, J. and Nowak, N. J. and Winterpacht, A. and Zabel, B. U. and Munroe, D. J. and Bric, E. and Housman, D. E. and Jones, C. and Nakamura, Y. and Gerhard, D. S. and Shows, T. B.}, title = {An Ordered NotI Fragment Map of Human Chromosome Band 11p15}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45766}, year = {1994}, abstract = {An ordered NotI fragment map containing over 60 loci and encompassing approximately 17 Mb has been constructed for human chromosome band llpl5. Forty-two probes, including 11 NotI-linking cosmids, were subregionaUy mapped to llpl5 using a subset of the Jl-deletion hybrids. These and 23 other probes defining loci previously mapped to 11p15 were hybridized to genomic DNA digested with NotI and 5 other infrequently cleaving restriction enzymes and separated by pulsed-field gel electrophoresis. Thirty-nine distinct NotI fragments were detected encompassing approximately 85\% of the estimated length of llp15. The predicted order of the gene loci used is cenMYODI- PTH-CALCA-ST5-RBTNI-HPX-HBB-RRMlTH/ INS!1GF2-H19-CTSD-MUC2-DRD4-HRAS-RNHtel. This map wiu allow higher resolution mapping of new Ilp15 markers, facilitate positional cloning of disease genes, and provide a framework for the physical mapping of llp15 in clone contigs.}, subject = {Genom / Genkartierung / Genanalyse}, language = {en} } @phdthesis{Hieke2019, author = {Hieke, Marie}, title = {Synaptic arrangements and potential communication partners of \(Drosophila's\) PDF-containing clock neurons within the accessory medulla}, doi = {10.25972/OPUS-17598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175988}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Endogenous clocks regulate physiological as well as behavioral rhythms within all organisms. They are well investigated in D. melanogaster on a molecular as well as anatomical level. The neuronal clock network within the brain represents the center for rhythmic activity control. One neuronal clock subgroup, the pigment dispersing factor (PDF) neurons, stands out for its importance in regulating rhythmic behavior. These neurons express the neuropeptide PDF (pigment dispersing factor). A small neuropil at the medulla's edge, the accessory medulla (AME), is of special interest, as it has been determined as the main center for clock control. It is not only highly innervated by the PDF neurons but also by terminals of all other clock neuron subgroups. Furthermore, terminals of the photoreceptors provide light information to the AME. Many different types of neurons converge within the AME and afterward spread to their next target. Thereby the AME is supplied with information from a variety of brain regions. Among these neurons are the aminergic ones whose receptors' are expressed in the PDF neurons. The present study sheds light onto putative synaptic partners and anatomical arrangements within the neuronal clock network, especially within the AME, as such knowledge is a prerequisite to understand circadian behavior. The aminergic neurons' conspicuous vicinity to the PDF neurons suggests synaptic communication among them. Thus, based on former anatomical studies regarding this issue detailed light microscopic studies have been performed. Double immunolabellings, analyses of the spatial relation of pre- and postsynaptic sites of the individual neuron populations with respect to each other and the identification of putative synaptic partners using GRASP reenforce the hypothesis of synaptic interactions within the AME between dopaminergic/ serotonergic neurons and the PDF neurons. To shed light on the synaptic partners I performed first steps in array tomography, as it allows terrific informative analyses of fluorescent signals on an ultrastructural level. Therefore, I tested different ways of sample preparation in order to achieve and optimize fluorescent signals on 100 nm thin tissue sections and I made overlays with electron microscopic images. Furthermore, I made assumptions about synaptic modulations within the neuronal clock network via glial cells. I detected their cell bodies in close vicinity to the AME and PDFcontaining clock neurons. It has already been shown that glial cells modulate the release of PDF from s-LNvs' terminals within the dorsal brain. On an anatomical level this modulation appears to exist also within the AME, as synaptic contacts that involve PDF-positive dendritic terminals are embedded into glial fibers. Intriguingly, these postsynaptic PDF fibers are often VIIAbstract part of dyadic or even multiple-contact sites in opposite to prolonged presynaptic active zonesimplicating complex neuronal interactions within the AME. To unravel possible mechanisms of such synaptic arrangements, I tried to localize the ABC transporter White. Its presence within glial cells would indicate a recycling mechanism of transmitted amines which allows their fast re-provision. Taken together, synapses accompanied by glial cells appear to be a common arrangement within the AME to regulate circadian behavior. The complexity of mechanisms that contribute in modulation of circadian information is reflected by the complex diversity of synaptic arrangements that involves obviously several types of neuron populations}, subject = {Taufliege}, language = {en} } @phdthesis{Hess2013, author = {Heß, Michael}, title = {Vaccinia virus-encoded bacterial beta-glucuronidase as a diagnostic biomarker for oncolytic virotherapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86789}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Oncolytic virotherapy represents a promising approach to revolutionize cancer therapy. Several preclinical and clinical trials display the safety of oncolytic viruses as wells as their efficiency against solid tumors. The development of complementary diagnosis and monitoring concepts as well as the optimization of anti-tumor activity are key points of current virotherapy research. Within the framework of this thesis, the diagnostic and therapeutic prospects of beta-glucuronidase expressed by the oncolytic vaccinia virus strain GLV-1h68 were evaluated. In this regard, a beta-glucuronidase-based, therapy-accompanying biomarker test was established which is currently under clinical validation. By using fluorescent substrates, the activity of virally expressed beta-glucuronidase could be detected and quantified. Thereby conclusions about the replication kinetics of oncolytic viruses in animal models and virus-induced cancer cell lysis could be drawn. These findings finally led to the elaboration and establishment of a versatile biomarker assay which allows statements regarding the replication of oncolytic viruses in mice based on serum samples. Besides the analysis of retrospective conditions, this test is able to serve as therapy-accompanying monitoring tool for virotherapy approaches with beta-glucuronidase-expressing viruses. The newly developed assay also served as complement to routinely used plaque assays as well as reference for virally expressed anti-angiogenic antibodies in additional preclinical studies. Further validation of this biomarker test is currently taking place in the context of clinical trials with GL-ONC1 (clinical grade GLV-1h68) and has already shown promising preliminary results. It was furthermore demonstrated that fluorogenic substrates in combination with beta-glucuronidase expressed by oncolytic viruses facilitated the optical detection of solid tumors in preclinical models. In addition to diagnostic purposes, virus-encoded enzymes could also be combined with prodrugs resulting in an improved therapeutic outcome of oncolytic virotherapy. In further studies, the visualization of virus-induced immune reactions as well as the establishment of innovative concepts to improve the therapeutic outcome of oncolytic virotherapy could be accomplished. In conclusion, the results of this thesis provide crucial findings about the influence of virally expressed beta-glucuronidase on various diagnostic concepts in the context of oncolytic virotherapy. In addition, innovative monitoring and therapeutic strategies could be established. Our preclinical findings have important clinical influence, particularly by the development of a therapy-associated biomarker assay which is currently used in different clinical trials.}, subject = {Vaccinia-Virus}, language = {en} } @article{HeydarianYangSchweinlinetal.2019, author = {Heydarian, Motaharehsadat and Yang, Tao and Schweinlin, Matthias and Steinke, Maria and Walles, Heike and Rudel, Thomas and Kozjak-Pavlovic, Vera}, title = {Biomimetic human tissue model for long-term study of Neisseria gonorrhoeae infection}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {1740}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.01740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197912}, year = {2019}, abstract = {Gonorrhea is the second most common sexually transmitted infection in the world and is caused by Gram-negative diplococcus Neisseria gonorrhoeae. Since N. gonorrhoeae is a human-specific pathogen, animal infection models are only of limited use. Therefore, a suitable in vitro cell culture model for studying the complete infection including adhesion, transmigration and transport to deeper tissue layers is required. In the present study, we generated three independent 3D tissue models based on porcine small intestinal submucosa (SIS) scaffold by co-culturing human dermal fibroblasts with human colorectal carcinoma, endometrial epithelial, and male uroepithelial cells. Functional analyses such as transepithelial electrical resistance (TEER) and FITC-dextran assay indicated the high barrier integrity of the created monolayer. The histological, immunohistochemical, and ultra-structural analyses showed that the 3D SIS scaffold-based models closely mimic the main characteristics of the site of gonococcal infection in human host including the epithelial monolayer, the underlying connective tissue, mucus production, tight junction, and microvilli formation. We infected the established 3D tissue models with different N. gonorrhoeae strains and derivatives presenting various phenotypes regarding adhesion and invasion. The results indicated that the disruption of tight junctions and increase in interleukin production in response to the infection is strain and cell type-dependent. In addition, the models supported bacterial survival and proved to be better suitable for studying infection over the course of several days in comparison to commonly used Transwell® models. This was primarily due to increased resilience of the SIS scaffold models to infection in terms of changes in permeability, cell destruction and bacterial transmigration. In summary, the SIS scaffold-based 3D tissue models of human mucosal tissues represent promising tools for investigating N. gonorrhoeae infections under close-to-natural conditions.}, language = {en} }