@article{DegenkolbeKoenigZimmeretal.2013, author = {Degenkolbe, Elisa and K{\"o}nig, Jana and Zimmer, Julia and Walther, Maria and Reißner, Carsten and Nickel, Joachim and Pl{\"o}ger, Frank and Raspopovic, Jelena and Sharpe, James and Dathe, Katharina and Hecht, Jacqueline T. and Mundlos, Stefan and Doelken, Sandra C. and Seemann, Petra}, title = {A GDF5 Point Mutation Strikes Twice - Causing BDA1 and SYNS2}, series = {PLOS Genetics}, volume = {9}, journal = {PLOS Genetics}, number = {10}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003846}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127556}, pages = {e1003846}, year = {2013}, abstract = {Growth and Differentiation Factor 5 (GDF5) is a secreted growth factor that belongs to the Bone Morphogenetic Protein (BMP) family and plays a pivotal role during limb development. GDF5 is a susceptibility gene for osteoarthritis (OA) and mutations in GDF5 are associated with a wide variety of skeletal malformations ranging from complex syndromes such as acromesomelic chondrodysplasias to isolated forms of brachydactylies or multiple synostoses syndrome 2 (SYNS2). Here, we report on a family with an autosomal dominant inherited combination of SYNS2 and additional brachydactyly type A1 (BDA1) caused by a single point mutation in GDF5 (p.W414R). Functional studies, including chondrogenesis assays with primary mesenchymal cells, luciferase reporter gene assays and Surface Plasmon Resonance analysis, of the GDF5 W-414R variant in comparison to other GDF5 mutations associated with isolated BDA1 (p.R399C) or SYNS2 (p.E491K) revealed a dual pathomechanism characterized by a gain-and loss-of-function at the same time. On the one hand insensitivity to the main GDF5 antagonist NOGGIN (NOG) leads to a GDF5 gain of function and subsequent SYNS2 phenotype. Whereas on the other hand, a reduced signaling activity, specifically via the BMP receptor type IA (BMPR1A), is likely responsible for the BDA1 phenotype. These results demonstrate that one mutation in the overlapping interface of antagonist and receptor binding site in GDF5 can lead to a GDF5 variant with pathophysiological relevance for both, BDA1 and SYNS2 development. Consequently, our study assembles another part of the molecular puzzle of how loss and gain of function mutations in GDF5 affect bone development in hands and feet resulting in specific types of brachydactyly and SYNS2. These novel insights into the biology of GDF5 might also provide further clues on the pathophysiology of OA.}, language = {en} } @article{ScharmannThornhamGrafeetal.2013, author = {Scharmann, Mathias and Thornham, Daniel G. and Grafe, T. Ulmar and Federle, Walter}, title = {A Novel Type of Nutritional Ant-Plant Interaction: Ant Partners of Carnivorous Pitcher Plants Prevent Nutrient Export by Dipteran Pitcher Infauna}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0063556}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130952}, pages = {e63556}, year = {2013}, abstract = {Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect-plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant-plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated \(^{15}N/^{14}N\) stable isotope abundance ratio (\(\delta ^{15}N\)) when colonised by C. schmitzi. This indicates that a higher proportion of the plants' nitrogen is insect-derived when C. schmitzi ants are present (ca. 100\%, vs. 77\% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a \(^{15}N\) pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar \(\delta ^{15}N\) cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers' trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants' prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant.}, language = {en} } @article{RiedelMofoloAvotaetal.2013, author = {Riedel, Alice and Mofolo, Boitumelo and Avota, Elita and Schneider-Schaulies, Sibylle and Meintjes, Ayton and Mulder, Nicola and Kneitz, Susanne}, title = {Accumulation of Splice Variants and Transcripts in Response to PI3K Inhibition in T Cells}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0050695}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130335}, pages = {e50695}, year = {2013}, abstract = {Background Measles virus (MV) causes T cell suppression by interference with phosphatidylinositol-3-kinase (PI3K) activation. We previously found that this interference affected the activity of splice regulatory proteins and a T cell inhibitory protein isoform was produced from an alternatively spliced pre-mRNA. Hypothesis Differentially regulated and alternatively splice variant transcripts accumulating in response to PI3K abrogation in T cells potentially encode proteins involved in T cell silencing. Methods To test this hypothesis at the cellular level, we performed a Human Exon 1.0 ST Array on RNAs isolated from T cells stimulated only or stimulated after PI3K inhibition. We developed a simple algorithm based on a splicing index to detect genes that undergo alternative splicing (AS) or are differentially regulated (RG) upon T cell suppression. Results Applying our algorithm to the data, 9\% of the genes were assigned as AS, while only 3\% were attributed to RG. Though there are overlaps, AS and RG genes differed with regard to functional regulation, and were found to be enriched in different functional groups. AS genes targeted extracellular matrix (ECM)-receptor interaction and focal adhesion pathways, while RG genes were mainly enriched in cytokine-receptor interaction and Jak-STAT. When combined, AS/RG dependent alterations targeted pathways essential for T cell receptor signaling, cytoskeletal dynamics and cell cycle entry. Conclusions PI3K abrogation interferes with key T cell activation processes through both differential expression and alternative splicing, which together actively contribute to T cell suppression.}, language = {en} } @article{RiedelMofoloAvotaetal.2013, author = {Riedel, Alice and Mofolo, Boitumelo and Avota, Elita and Schneider-Schaulies, Sibylle and Meintjes, Ayton and Mulder, Nicola and Kneitz, Susanne}, title = {Accumulation of Splice Variants and Transcripts in Response to PI3K Inhibition in T Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77917}, year = {2013}, abstract = {Background: Measles virus (MV) causes T cell suppression by interference with phosphatidylinositol-3-kinase (PI3K) activation. We previously found that this interference affected the activity of splice regulatory proteins and a T cell inhibitory protein isoform was produced from an alternatively spliced pre-mRNA. Hypothesis: Differentially regulated and alternatively splice variant transcripts accumulating in response to PI3K abrogation in T cells potentially encode proteins involved in T cell silencing. Methods: To test this hypothesis at the cellular level, we performed a Human Exon 1.0 ST Array on RNAs isolated from T cells stimulated only or stimulated after PI3K inhibition. We developed a simple algorithm based on a splicing index to detect genes that undergo alternative splicing (AS) or are differentially regulated (RG) upon T cell suppression. Results: Applying our algorithm to the data, 9\% of the genes were assigned as AS, while only 3\% were attributed to RG. Though there are overlaps, AS and RG genes differed with regard to functional regulation, and were found to be enriched in different functional groups. AS genes targeted extracellular matrix (ECM)-receptor interaction and focal adhesion pathways, while RG genes were mainly enriched in cytokine-receptor interaction and Jak-STAT. When combined, AS/RG dependent alterations targeted pathways essential for T cell receptor signaling, cytoskeletal dynamics and cell cycle entry. Conclusions: PI3K abrogation interferes with key T cell activation processes through both differential expression and alternative splicing, which together actively contribute to T cell suppression.}, subject = {Biologie}, language = {en} } @article{BrehmKoziolKrohne2013, author = {Brehm, Klaus and Koziol, Uriel and Krohne, Georg}, title = {Anatomy and development of the larval nervous system in Echinococcus multilocularis}, series = {Frontiers in Zoology}, journal = {Frontiers in Zoology}, doi = {10.1186/1742-9994-10-24}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96504}, year = {2013}, abstract = {Background The metacestode larva of Echinococcus multilocularis (Cestoda: Taeniidae) develops in the liver of intermediate hosts (typically rodents, or accidentally in humans) as a labyrinth of interconnected cysts that infiltrate the host tissue, causing the disease alveolar echinococcosis. Within the cysts, protoscoleces (the infective stage for the definitive canid host) arise by asexual multiplication. These consist of a scolex similar to that of the adult, invaginated within a small posterior body. Despite the importance of alveolar echinococcosis for human health, relatively little is known about the basic biology, anatomy and development of E. multilocularis larvae, particularly with regard to their nervous system. Results We describe the existence of a subtegumental nerve net in the metacestode cysts, which is immunoreactive for acetylated tubulin-α and contains small populations of nerve cells that are labeled by antibodies raised against several invertebrate neuropeptides. However, no evidence was found for the existence of cholinergic or serotoninergic elements in the cyst wall. Muscle fibers occur without any specific arrangement in the subtegumental layer, and accumulate during the invaginations of the cyst wall that form brood capsules, where protoscoleces develop. The nervous system of the protoscolex develops independently of that of the metacestode cyst, with an antero-posterior developmental gradient. The combination of antibodies against several nervous system markers resulted in a detailed description of the protoscolex nervous system, which is remarkably complex and already similar to that of the adult worm. Conclusions We provide evidence for the first time of the existence of a nervous system in the metacestode cyst wall, which is remarkable given the lack of motility of this larval stage, and the lack of serotoninergic and cholinergic elements. We propose that it could function as a neuroendocrine system, derived from the nervous system present in the bladder tissue of other taeniids. The detailed description of the development and anatomy of the protoscolex neuromuscular system is a necessary first step toward the understanding of the developmental mechanisms operating in these peculiar larval stages.}, language = {en} } @article{BeierGaetschenbergerAzzamietal.2013, author = {Beier, Hildburg and G{\"a}tschenberger, Heike and Azzami, Klara and Tautz, J{\"u}rgen}, title = {Antibacterial Immune Competence of Honey Bees (Apis mellifera) Is Adapted to Different Life Stages and Environmental Risks}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0066415}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96895}, year = {2013}, abstract = {The development of all honey bee castes proceeds through three different life stages all of which encounter microbial infections to a various extent. We have examined the immune strength of honey bees across all developmental stages with emphasis on the temporal expression of cellular and humoral immune responses upon artificial challenge with viable Escherichia coli bacteria. We employed a broad array of methods to investigate defence strategies of infected individuals: (a) fate of bacteria in the haemocoel; (b) nodule formation and (c) induction of antimicrobial peptides (AMPs). Newly emerged adult worker bees and drones were able to activate efficiently all examined immune reactions. The number of viable bacteria circulating in the haemocoel of infected bees declined rapidly by more than two orders of magnitude within the first 4-6 h post-injection (p.i.), coinciding with the occurrence of melanised nodules. Antimicrobial activity, on the other hand, became detectable only after the initial bacterial clearance. These two temporal patterns of defence reactions very likely represent the constitutive cellular and the induced humoral immune response. A unique feature of honey bees is that a fraction of worker bees survives the winter season in a cluster mostly engaged in thermoregulation. We show here that the overall immune strength of winter bees matches that of young summer bees although nodulation reactions are not initiated at all. As expected, high doses of injected viable E.coli bacteria caused no mortality in larvae or adults of each age. However, drone and worker pupae succumbed to challenge with E.coli even at low doses, accompanied by a premature darkening of the pupal body. In contrast to larvae and adults, we observed no fast clearance of viable bacteria and no induction of AMPs but a rapid proliferation of E.coli bacteria in the haemocoel of bee pupae ultimately leading to their death.}, language = {en} } @article{SchulSchmittRegnerietal.2013, author = {Schul, Daniela and Schmitt, Alexandra and Regneri, Janine and Schartl, Manfred and Wagner, Toni Ulrich}, title = {Bursted BMP Triggered Receptor Kinase Activity Drives Smad1 Mediated Long-Term Target Gene Oscillation in c2c12 Cells}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0059442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130131}, pages = {e59442}, year = {2013}, abstract = {Bone Morphogenetic Proteins (BMPs) are important growth factors that regulate many cellular processes. During embryogenesis they act as morphogens and play a critical role during organ development. They influence cell fates via concentration-gradients in the embryos where cells transduce this extracellular information into gene expression profiles and cell fate decisions. How receiving cells decode and quantify BMP2/4 signals is hardly understood. There is little data on the quantitative relationships between signal input, transducing molecules, their states and location, and ultimately their ability to integrate graded systemic inputs and generate qualitative responses. Understanding this signaling network on a quantitative level should be considered a prerequisite for efficient pathway modulation, as the BMP pathway is a prime target for therapeutic invention. Hence, we quantified the spatial distribution of the main signal transducer of the BMP2/4 pathway in response to different types and levels of stimuli in c2c12 cells. We found that the subcellular localization of Smad1 is independent of ligand concentration. In contrast, Smad1 phosphorylation levels relate proportionally to BMP2 ligand concentrations and they are entirely located in the nucleus. Interestingly, we found that BMP2 stimulates target gene expression in non-linear, wave-like forms. Amplitudes showed a clear concentration-dependency, for sustained and transient stimulation. We found that even burst-stimulation triggers gene-expression wave-like modulations that are detectable for at least 30 h. Finally, we show here that target gene expression oscillations depend on receptor kinase activity, as the kinase drives further expression pulses without receptor reactivation and the target gene expression breaks off after inhibitor treatment in c2c12 cells.}, language = {en} } @article{NgwaScheuermayerMairetal.2013, author = {Ngwa, Che Julius and Scheuermayer, Matthias and Mair, Gunnar Rudolf and Kern, Selina and Br{\"u}gl, Thomas and Wirth, Christine Clara and Aminake, Makoah Nigel and Wiesner, Jochen and Fischer, Rainer and Vilcinskas, Andreas and Pradel, Gabriele}, title = {Changes in the transcriptome of the malaria parasite Plasmodium falciparum during the initial phase of transmission from the human to the mosquito}, series = {BMC Genomics}, volume = {14}, journal = {BMC Genomics}, number = {256}, issn = {1471-2164}, doi = {10.1186/1471-2164-14-256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121905}, year = {2013}, abstract = {Background: The transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by dormant sexual precursor cells, the gametocytes, which become activated in the mosquito midgut. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they play a crucial role in spreading the tropical disease. The human-to-mosquito transmission triggers important molecular changes in the gametocytes, which initiate gametogenesis and prepare the parasite for life-cycle progression in the insect vector. Results: To better understand gene regulations during the initial phase of malaria parasite transmission, we focused on the transcriptome changes that occur within the first half hour of parasite development in the mosquito. Comparison of mRNA levels of P. falciparum gametocytes before and 30 min following activation using suppression subtractive hybridization (SSH) identified 126 genes, which changed in expression during gametogenesis. Among these, 17.5\% had putative functions in signaling, 14.3\% were assigned to cell cycle and gene expression, 8.7\% were linked to the cytoskeleton or inner membrane complex, 7.9\% were involved in proteostasis and 6.4\% in metabolism, 12.7\% were cell surface-associated proteins, 11.9\% were assigned to other functions, and 20.6\% represented genes of unknown function. For 40\% of the identified genes there has as yet not been any protein evidence. For a subset of 27 genes, transcript changes during gametogenesis were studied in detail by real-time RT-PCR. Of these, 22 genes were expressed in gametocytes, and for 15 genes transcript expression in gametocytes was increased compared to asexual blood stage parasites. Transcript levels of seven genes were particularly high in activated gametocytes, pointing at functions downstream of gametocyte transmission to the mosquito. For selected genes, a regulated expression during gametogenesis was confirmed on the protein level, using quantitative confocal microscopy. Conclusions: The obtained transcriptome data demonstrate the regulations of gene expression immediately following malaria parasite transmission to the mosquito. Our findings support the identification of proteins important for sexual reproduction and further development of the mosquito midgut stages and provide insights into the genetic basis of the rapid adaption of Plasmodium to the insect vector.}, language = {en} } @article{ForconiCanapaBaruccaetal.2013, author = {Forconi, Mariko and Canapa, Adriana and Barucca, Marco and Biscotti, Maria A. and Capriglione, Teresa and Buonocore, Francesco and Fausto, Anna M. and Makapedua, Daisy M. and Pallavicini, Alberto and Gerdol, Marco and De Moro, Gianluca and Scapigliati, Giuseppe and Olmo, Ettore and Schartl, Manfred}, title = {Characterization of Sex Determination and Sex Differentiation Genes in Latimeria}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0056006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130995}, pages = {e56006}, year = {2013}, abstract = {Genes involved in sex determination and differentiation have been identified in mice, humans, chickens, reptiles, amphibians and teleost fishes. However, little is known of their functional conservation, and it is unclear whether there is a common set of genes shared by all vertebrates. Coelacanths, basal Sarcopterygians and unique "living fossils", could help establish an inventory of the ancestral genes involved in these important developmental processes and provide insights into their components. In this study 33 genes from the genome of Latimeria chalumnae and from the liver and testis transcriptomes of Latimeria menadoensis, implicated in sex determination and differentiation, were identified and characterized and their expression levels measured. Interesting findings were obtained for GSDF, previously identified only in teleosts and now characterized for the first time in the sarcopterygian lineage; FGF9, which is not found in teleosts; and DMRT1, whose expression in adult gonads has recently been related to maintenance of sexual identity. The gene repertoire and testis-specific gene expression documented in coelacanths demonstrate a greater similarity to modern fishes and point to unexpected changes in the gene regulatory network governing sexual development.}, language = {en} } @article{RudelPrustySiegletal.2013, author = {Rudel, Thomas and Prusty, Bhupesh K. and Siegl, Christine and Hauck, Petra and Hain, Johannes and Korhonen, Suvi J. and Hiltunen-Back, Eija and Poulakkainen, Mirja}, title = {Chlamydia trachomatis Infection Induces Replication of Latent HHV-6}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0061400}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96731}, year = {2013}, abstract = {Human herpesvirus-6 (HHV-6) exists in latent form either as a nuclear episome or integrated into human chromosomes in more than 90\% of healthy individuals without causing clinical symptoms. Immunosuppression and stress conditions can reactivate HHV-6 replication, associated with clinical complications and even death. We have previously shown that co-infection of Chlamydia trachomatis and HHV-6 promotes chlamydial persistence and increases viral uptake in an in vitro cell culture model. Here we investigated C. trachomatis-induced HHV-6 activation in cell lines and fresh blood samples from patients having Chromosomally integrated HHV-6 (CiHHV-6). We observed activation of latent HHV-6 DNA replication in CiHHV-6 cell lines and fresh blood cells without formation of viral particles. Interestingly, we detected HHV-6 DNA in blood as well as cervical swabs from C. trachomatis-infected women. Low virus titers correlated with high C. trachomatis load and vice versa, demonstrating a potentially significant interaction of these pathogens in blood cells and in the cervix of infected patients. Our data suggest a thus far underestimated interference of HHV-6 and C. trachomatis with a likely impact on the disease outcome as consequence of co-infection.}, language = {en} } @article{WiegeringPfannUtheetal.2013, author = {Wiegering, Armin and Pfann, Christina and Uthe, Friedrich Wilhelm and Otto, Christoph and Rycak, Lukas and M{\"a}der, Uwe and Gasser, Martin and Waaga-Gasser, Anna-Maria and Eilers, Martin and Germer, Christoph-Thomas}, title = {CIP2A Influences Survival in Colon Cancer and Is Critical for Maintaining Myc Expression}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0075292}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97252}, year = {2013}, abstract = {The cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncogenic factor that stabilises the c-Myc protein. CIP2A is overexpressed in several tumours, and expression levels are an independent marker for long-term outcome. To determine whether CIP2A expression is elevated in colon cancer and whether it might serve as a prognostic marker for survival, we analysed CIP2A mRNA expression by real-time PCR in 104 colon cancer samples. CIP2A mRNA was overexpressed in colon cancer samples and CIP2A expression levels correlated significantly with tumour stage. We found that CIP2A serves as an independent prognostic marker for disease-free and overall survival. Further, we investigated CIP2A-dependent effects on levels of c-Myc, Akt and on cell proliferation in three colon cancer cell lines by silencing CIP2A using small interfering (si) and short hairpin (sh) RNAs. Depletion of CIP2A substantially inhibited growth of colon cell lines and reduced c-Myc levels without affecting expression or function of the upstream regulatory kinase, Akt. Expression of CIP2A was found to be dependent on MAPK activity, linking elevated c-Myc expression to deregulated signal transduction in colon cancer.}, language = {en} } @article{RinawatiSteinLindner2013, author = {Rinawati, Fitria and Stein, Katharina and Lindner, Andr{\´e}}, title = {Climate change impacts on biodiversity-the setting of a lingering global crisis}, series = {Diversity}, volume = {5}, journal = {Diversity}, number = {1}, doi = {10.3390/d50100114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131866}, pages = {114-123}, year = {2013}, abstract = {Climate change has created potential major threats to global biodiversity. The multiple components of climate change are projected to affect all pillars of biodiversity, from genes over species to biome level. Of particular concerns are "tipping points" where the exceedance of ecosystem thresholds will possibly lead to irreversible shifts of ecosystems and their functioning. As biodiversity underlies all goods and services provided by ecosystems that are crucial for human survival and wellbeing, this paper presents potential effects of climate change on biodiversity, its plausible impacts on human society as well as the setting in addressing a global crisis. Species affected by climate change may respond in three ways: change, move or die. Local species extinctions or a rapidly affected ecosystem as a whole respectively might move toward its particular "tipping point", thereby probably depriving its services to human society and ending up in a global crisis. Urgent and appropriate actions within various scenarios of climate change impacts on biodiversity, especially in tropical regions, are needed to be considered. Foremost a multisectoral approach on biodiversity issues with broader policies, stringent strategies and programs at international, national and local levels is essential to meet the challenges of climate change impacts on biodiversity.}, language = {en} } @phdthesis{Leingaertner2013, author = {Leing{\"a}rtner, Annette}, title = {Combined effects of climate change and extreme events on plants, arthropods and their interactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {I. Global climate change directly and indirectly influences biotic and abiotic components of ecosystems. Changes in abiotic ecosystem components caused by climate change comprise temperature increases, precipitation changes and more frequently occurring extreme events. Mediated by these abiotic changes, biotic ecosystem components including all living organisms will also change. Expected changes of plants and animals are advanced phenologies and range shifts towards higher latitudes and altitudes which presumably induce changes in species interactions and composition. Altitudinal gradients provide an optimal opportunity for climate change studies, because they serve as natural experiments due to fast changing climatic conditions within short distances. In this dissertation two different approaches were conducted to reveal species and community responses to climate change. First, species richness and community trait analyses along an altitudinal gradient in the Bavarian Alps (chapters II, III) and second, climate change manipulation experiments under different climatic contexts (chapters IV, V, IV). II. We performed biodiversity surveys of butterfly and diurnal moth species on 34 grassland sites along an altitudinal gradient in the National Park Berchtesgaden. Additionally, we analysed the dominance structure of life-history traits in butterfly assemblages along altitude. Species richness of butterflies and diurnal moths decreased with increasing altitude. The dominance of certain life-history-traits changed along the altitudinal gradient with a higher proportion of larger-winged species and species with higher egg numbers towards higher altitudes. However, the mean egg maturation time, population density and geographic distribution within butterfly assemblages decreased with increasing altitude. Our results indicate that butterfly assemblages were mainly shaped by environmental filtering. We conclude that butterfly assemblages at higher altitudes will presumably lack adaptive capacity to future climatic conditions, because of specific trait combinations. III. In addition to butterfly and diurnal moth species richness we also studied plant species richness in combination with pollination type analyses along the altitudinal gradient. The management type of the alpine grasslands was also integrated in the analyses to detect combined effects of climate and management on plant diversity and pollination type. Plant species richness was highest at intermediate altitudes, whereby the management type influenced the plant diversity with more plant species at grazed compared to mown or non-managed grasslands. The pollination type was affected by both the changing climate along the gradient and the management type. These results suggest that extensive grazing can maintain high plant diversity along the whole altitudinal gradient. With ongoing climate change the diversity peak of plants may shift upwards, which can cause a decrease in biodiversity due to reduced grassland area but also changes in species composition and adaptive potential of pollination types. IV. We set up manipulation experiments on 15 grassland sites along the altitudinal gradient in order to determine the combined effects of extreme climatic events (extreme drought, advanced and delayed snowmelt) and elevation on the nutritional quality and herbivory rates of alpine plants. The leaf CN (carbon to nitrogen) ratio and the plant damage through herbivores were not significantly affected by the simulated extreme events. However, elevation influenced the CN ratios and herbivory rates of alpine plants with contrasting responses between plant guilds. Furthermore, we found differences in nitrogen concentrations and herbivory rates between grasses, legumes and forbs, whereas legumes had the highest nitrogen concentrations and were damaged most. Additionally, CN ratios and herbivory rates increased during the growing season, indicating a decrease of food plant quality during the growing season. Contrasting altitudinal responses of grasses, legumes and forbs presumably can change the dominance structure among these plant guilds with ongoing climate change. V. In this study we analysed the phenological responses of grassland species to an extreme drought event, advanced and delayed snowmelt along the altitudinal gradient. Advanced snowmelt caused an advanced beginning of flowering, whereas this effect was more pronounced at higher than at lower altitudes. Extreme drought and delayed snowmelt had rather low effects on the flower phenology and the responses did not differ between higher and lower sites. The strongest effect influencing flower phenology was altitude, with a declining effect through the season. The length of flowering duration was not significantly influenced by treatments. Our data suggest that plant species at higher altitudes may be more affected by changes in snowmelt timing in contrast to lowland species, as at higher altitudes more severe changes are expected. However, the risk of extreme drought events on flowering phenology seems to be low. VI. We established soil-emergence traps on the advanced snowmelt and control treatment plots in order to detect possible changes in abundances and emergence phenologies of five arthropod orders due to elevation and treatment. Additionally, we analysed the responses of Coleoptera species richness to elevation and treatment. We found that the abundance and species richness of Coleoptera increased with elevation as well as the abundance of Diptera. However, the abundance of Hemiptera decreased with elevation and the abundances of Araneae and Hymenoptera showed no elevational patterns. The advanced snowmelt treatment increased the abundances of Araneae and Hymenoptera. The emergence of soil-hibernating arthropods was delayed up to seven weeks at higher elevations, whereas advanced snowmelt did not influence the emergence phenology of arthropods immediately after snowmelt. With climate change earlier snowmelt will occur more often, which especially will affect soil-hibernating arthropods in alpine regions and may cause desynchronisations between species interactions. VII. In conclusion, we showed that alpine ecosystems are sensitive towards changing climate conditions and extreme events and that many alpine species in the Bavarian Alps are endangered. Many alpine species could exist under warmer climatic conditions, however they are expected to be outcompeted by more competitive lowland species. Furthermore, host-parasite or predator-prey interactions can be disrupted due to different responses of certain guilds to climate change. Understanding and predicting the complex dynamics and potential risks of future climate change remains a great challenge and therefore further studies analysing species and community responses to climate change are needed.}, subject = {Insekten}, language = {en} } @article{WolfChenSongetal.2013, author = {Wolf, Matthias and Chen, Shilin and Song, Jingyuan and Ankenbrand, Markus and M{\"u}ller, Tobias}, title = {Compensatory Base Changes in ITS2 Secondary Structures Correlate with the Biological Species Concept Despite Intragenomic Variability in ITS2 Sequences - A Proof of Concept}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0066726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96450}, year = {2013}, abstract = {Compensatory base changes (CBCs) in internal transcribed spacer 2 (ITS2) rDNA secondary structures correlate with Ernst Mayr's biological species concept. This hypothesis also referred to as the CBC species concept recently was subjected to large-scale testing, indicating two distinct probabilities. (1) If there is a CBC then there are two different species with a probability of ~0.93. (2) If there is no CBC then there is the same species with a probability of ~0.76. In ITS2 research, however, the main problem is the multicopy nature of ITS2 sequences. Most recently, 454 pyrosequencing data have been used to characterize more than 5000 intragenomic variations of ITS2 regions from 178 plant species, demonstrating that mutation of ITS2 is frequent, with a mean of 35 variants per species, respectively per individual organism. In this study, using those 454 data, the CBC criterion is reconsidered in the light of intragenomic variability, a proof of concept, a necessary criterion, expecting no intragenomic CBCs in variant ITS2 copies. In accordance with the CBC species concept, we could demonstrate that the probability that there is no intragenomic CBC is ~0.99.}, language = {en} } @article{KangSchartlWalteretal.2013, author = {Kang, Ji Hyoun and Schartl, Manfred and Walter, Ronald B. and Meyer, Axel}, title = {Comprehensive phylogenetic analysis of all species of swordtails and platies (Pisces: Genus Xiphophorus) uncovers a hybrid origin of a swordtail fish, Xiphophorus monticolus, and demonstrates that the sexually selected sword originated in the ancestral lineage of the genus, but was lost again secondarily}, series = {BMC Evolutionary Biology}, volume = {13}, journal = {BMC Evolutionary Biology}, number = {25}, issn = {1471-2148}, doi = {10.1186/1471-2148-13-25}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121853}, year = {2013}, abstract = {Background: Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword - hence their common name "swordtails". Longer swords are preferred by females from both sworded and - surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. Results: We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely ancestral state for the genus Xiphophorus. Further, we provide a well supported estimation of the phylogenetic relationships between the previously unresolved northern swordtail groups. Conclusions: This comprehensive molecular phylogeny of the entire genus Xiphophorus provides evidence that a second swordtail species, X. monticolus, arose through hybridization. Previously, we demonstrated that X. clemenciae, another southern swordtail species, arose via hybridization. These findings highlight the potential key role of hybridization in the evolution of this genus and suggest the need for further investigations into how hybridization contributes to speciation more generally.}, language = {en} } @article{RybalkaWolfAndersenetal.2013, author = {Rybalka, Nataliya and Wolf, Matthias and Andersen, Robert and Friedl, Thomas}, title = {Congruence of chloroplast- and nuclear-encoded DNA sequence variations used to assess species boundaries in the soil microalga Heterococcus (Stramenopiles, Xanthophyceae)}, series = {BMC Evolutionary Biology}, volume = {13}, journal = {BMC Evolutionary Biology}, number = {39}, issn = {1471-2148}, doi = {10.1186/1471-2148-13-39}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121848}, year = {2013}, abstract = {Background: Heterococcus is a microalgal genus of Xanthophyceae (Stramenopiles) that is common and widespread in soils, especially from cold regions. Species are characterized by extensively branched filaments produced when grown on agarized culture medium. Despite the large number of species described exclusively using light microscopic morphology, the assessment of species diversity is hampered by extensive morphological plasticity. Results: Two independent types of molecular data, the chloroplast-encoded psbA/rbcL spacer complemented by rbcL gene and the internal transcribed spacer 2 of the nuclear rDNA cistron (ITS2), congruently recovered a robust phylogenetic structure. With ITS2 considerable sequence and secondary structure divergence existed among the eight species, but a combined sequence and secondary structure phylogenetic analysis confined to helix II of ITS2 corroborated relationships as inferred from the rbcL gene phylogeny. Intra-genomic divergence of ITS2 sequences was revealed in many strains. The 'monophyletic species concept', appropriate for microalgae without known sexual reproduction, revealed eight different species. Species boundaries established using the molecular-based monophyletic species concept were more conservative than the traditional morphological species concept. Within a species, almost identical chloroplast marker sequences (genotypes) were repeatedly recovered from strains of different origins. At least two species had widespread geographical distributions; however, within a given species, genotypes recovered from Antarctic strains were distinct from those in temperate habitats. Furthermore, the sequence diversity may correspond to adaptation to different types of habitats or climates. Conclusions: We established a method and a reference data base for the unambiguous identification of species of the common soil microalgal genus Heterococcus which uses DNA sequence variation in markers from plastid and nuclear genomes. The molecular data were more reliable and more conservative than morphological data.}, language = {en} } @article{SchultzKeller2013, author = {Schultz, J{\"o}rg and Keller, Daniela Barbara}, title = {Connectivity, Not Frequency, Determines the Fate of a Morpheme}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0069945}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97039}, year = {2013}, abstract = {Morphemes are the smallest meaningful parts of words and therefore represent a natural unit to study the evolution of words. To analyze the influence of language change on morphemes, we performed a large scale analysis of German and English vocabulary covering the last 200 years. Using a network approach from bioinformatics, we examined the historical dynamics of morphemes, the fixation of new morphemes and the emergence of words containing existing morphemes. We found that these processes are driven mainly by the number of different direct neighbors of a morpheme in words (connectivity, an equivalent to family size or type frequency) and not its frequency of usage (equivalent to token frequency). This contrasts words, whose survival is determined by their frequency of usage. We therefore identified features of morphemes which are not dictated by the statistical properties of words. As morphemes are also relevant for the mental representation of words, this result might enable establishing a link between an individual's perception of language and historical language change.}, language = {en} } @article{MenzelBluethgenTolaschetal.2013, author = {Menzel, Florian and Bl{\"u}thgen, Nico and Tolasch, Till and Conrad, J{\"u}rgen and Beifuss, Uwe and Beuerle, Till and Schmitt, Thomas}, title = {Crematoenones - a novel substance class exhibited by ants functions as appeasement signal}, series = {Frontiers in Zoology}, volume = {10}, journal = {Frontiers in Zoology}, number = {32}, issn = {1742-9994}, doi = {10.1186/1742-9994-10-32}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122595}, year = {2013}, abstract = {Background: Parasitic, commensalistic, and mutualistic guests in social insect colonies often circumvent their hosts' nestmate recognition system to be accepted. These tolerance strategies include chemical mimicry and chemical insignificance. While tolerance strategies have been studied intensively in social parasites, little is known about these mechanisms in non-parasitic interactions. Here, we describe a strategy used in a parabiotic association, i.e. two mutualistic ant species that regularly share a common nest although they have overlapping food niches. One of them, Crematogaster modiglianii, produces an array of cuticular compounds which represent a substance class undescribed in nature so far. They occur in high abundances, which suggests an important function in the ant's association with its partner Camponotus rufifemur. Results: We elucidated the structure of one of the main compounds from cuticular extracts using gas chromatography, mass spectrometry, chemical derivatizations and nuclear magnetic resonance spectroscopy (NMR). The compound consists of two fused six-membered rings with two alkyl groups, one of which carries a keto functionality. To our knowledge, this is the first report on the identification of this substance class in nature. We suggest naming the compound crematoenone. In behavioural assays, crematoenones reduced interspecific aggression. Camponotus showed less aggression to allospecific cuticular hydrocarbons when combined with crematoenones. Thus, they function as appeasement substances. However, although the crematoenone composition was highly colony-specific, interspecific recognition was mediated by cuticular hydrocarbons, and not by crematoenones. Conclusions: Crematenones enable Crematogaster to evade Camponotus aggression, and thus reduce potential costs from competition with Camponotus. Hence, they seem to be a key factor in the parabiosis, and help Crematogaster to gain a net benefit from the association and thus maintain a mutualistic association over evolutionary time. To our knowledge, putative appeasement substances have been reported only once so far, and never between non-parasitic species. Since most organisms associated with social insects need to overcome their nestmate recognition system, we hypothesize that appeasement substances might play an important role in the evolution and maintenance of other mutualistic associations as well, by allowing organisms to reduce costs from antagonistic behaviour of other species.}, language = {en} } @phdthesis{Hillebrand2013, author = {Hillebrand, Frank}, title = {Der Einfluss des PI3-Kinase Signalwegs auf die Regulation des alternativen HIV-1 pr{\"a}-mRNA Spleißens}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76914}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In der vorliegenden Arbeit wurden ausgehend von HIV-1 basierten Minigenkonstrukten und der proviralen NL4-3 DNA die Einfl{\"u}sse der PI3K Signalwegmodulation auf das alternative Spleißen der HIV-1 pr{\"a}-mRNA sowie auf die Virus Replikation untersucht. Mittels RT-PCR Analysen konnte gezeigt werden, dass die PI3K Inhibition im Falle der HIV-1 basierten Minigenkonstrukte in einer erh{\"o}hten Abundanz ungespleißter bzw. intronhaltiger mRNAs resultierte, w{\"a}hrend im Kontext des Virus die Induktion alternativer Tat Transkriptvarianten nachgewiesen werden konnte. Als Folge der Inhibition des PI3K Signalwegs kam es zu einem vermehrten Einschluss der HIV-1 Leader Exone2/2b und 3. Da der Einschluss dieser Exone durch die hnRNP A/B- und F/H-abh{\"a}ngigen Silencer Elemente ESSV und GI2-1 negativ reguliert wird, wurde vermutet, dass die PI3K Inhibition mit der Funktionalit{\"a}t dieser spleißregulatorischen Aktivit{\"a}t interferiert. Unterst{\"u}tzt wurde diese Hypothese durch Replikationsexperimente mit ESSV und GI2-1 Mutanten in Gegenwart und Abwesenheit des PI3K-Inhibitors. Zus{\"a}tzlich wurde auch der Einfluss des Inhibitors unter {\"U}berexpressionsbedingungen von hnRNP H auf das alternative HIV-1 Spleißen analysiert. In dieser Arbeit konnte ebenfalls gezeigt werden, dass die PI3K Inhibition ein ver{\"a}ndertes hnRNP H Spleißmuster bedingt sowie die SR-Protein Phosphorylierung und Expression beeinflusst. Des Weiteren war es im Verlauf der vorliegenden Arbeit m{\"o}glich, eine Interferenz der PI3K Modulation mit der Virus Replikation nachzuweisen. Die {\"U}berexpression der aktivierten Akt-Kinase lies hier nur eine sehr geringe Virus Produktion zu w{\"a}hrend die PI3K Inhibition diese auf ca. die H{\"a}lfte reduzierte. Weiterf{\"u}hrende Experimente zeigten, dass die {\"U}berexpression der aktivierten Akt-Kinase den nuklearen Export Rev-abh{\"a}ngiger HIV-1 mRNAs zu blockieren scheint. Dar{\"u}ber hinaus beeinflusste die PI3K Inhibition neben dem alternativen HIV-1 Spleißen auch die virale Transkription sowie die zellul{\"a}re Translation. Zusammen k{\"o}nnten diese Effekte die reduzierte virale Replikation erkl{\"a}ren. Der PI3K Signalweg spielt somit eine zentrale Rolle bei dem alternativen HIV-1 Spleißen und der viralen Replikation und bietet so die M{\"o}glichkeit der Entwicklung neuer Ans{\"a}tze einer antiviralen Therapie.  }, subject = {RNS-Spleißen}, language = {de} } @phdthesis{Zovko2013, author = {Zovko, Josip}, title = {Die E3-Ubiquitinligase HectD1 reguliert die Stabilit{\"a}t des antiapoptotischen Bcl-2-Familienmitglieds A1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87922}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die Bcl-2-Familienmitglieder A1 und sein humanes Homolog Bfl-1 gew{\"a}hrleisten das {\"U}berleben der Zelle. Gleichzeitig tr{\"a}gt eine Dysregulation der Expression von A1/ Bfl-1 zur Krebsentstehung bei. Die Stabilit{\"a}t von A1/ Bfl-1 wird durch deren Ubiquitinylierung sowie die anschließende proteosomale Degradation gesteuert. Mit Hilfe eines Yeast-Two-Hybrid-Screens wurde die E3-Ubiquitinligase HectD1 als potentieller Interaktionspartner von A1/ Bfl-1 identifiziert. Die Interaktion von A1 und HectD1 des Yeast-Two-Hybrid-Screens konnte in S{\"a}ugerzellen best{\"a}tigt werden. Desweiteren konnte gezeigt werden, dass lediglich 87 Aminos{\"a}uren f{\"u}r eine Interaktion von HectD1 und A1 n{\"o}tig sind. Da membrangebundenes HectD1 zu einer Translokation von zytosolischem A1 an die Zellmembran f{\"u}hrt, kann man davon ausgehen, dass beide Proteine auch in vivo miteinander interagieren. Eine dominant negative HectD1-Mutante schließlich beeinflusst die Ubiqutinylierung von A1 und f{\"u}hrt somit zu dessen Stabilisierung. Diese Daten legen nahe, dass HectD1 ein wichtiger negativer Regulator von A1/ Bfl-1 ist und dass HectD1 f{\"u}r die Regulierung der A1/ Bfl-1-Proteinmenge in (Krebs)zellen sehr wichtig ist.}, subject = {Zelltod}, language = {de} }