@article{WeichSebaldSchaireretal.1986, author = {Weich, H. A. and Sebald, Walter and Schairer, H. U. and Hoppe, J.}, title = {The human osteosarcoma cell line U-2 OS expresses a 3.8 kilobase mRNA which codes for the sequence of the PDGF-B chain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62588}, year = {1986}, abstract = {A cDNA clone of about 2500 basepairswas prepared from the human osteosarcoma cellline U-2 OS by hybridizing with a v-sis probe. Sequence analysis showed that this cDNA contains the coding region for the PDGF-B chain. Here we report that the mitogen secreted by these osteosarcoma cells contains the PDGF-B chain and is probably a homodimer of two B-chains.}, subject = {Biochemie}, language = {en} } @article{HoppeGattiWeberetal.1986, author = {Hoppe, J. and Gatti, D. and Weber, H. and Sebald, Walter}, title = {Labeling of individual amino acid residues in the membrane-embedded F\(_0\) part of the F\(_1\) F\(_0\) ATP synthase from Neurospora crassa. Influence of oligomycin and dicyclohexylcarbodiimide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62598}, year = {1986}, abstract = {Three F0 subunits and the F\(_1\) subunit P of the ATP synthase from Neurospora crassa were labeled with the lipophilic photoactivatable reagent 3-(trifluoromethyl)-3-(m-[\(^{125}\)I]iodophenyl)diazirine ([\(^{125}\)I]TID). In the proteolipid subunit which was the most heavily labeled polypeptide labeling was confmed to five residues at the NH2-terminus and five residues at the C-terminus ofthe protein. Labeling occurred at similar positions compared with the homologaus protein (subunit c) in the ATP synthase from Escherichia coli, indicating a similar structure of the proteolipid subunits in their respective organisms. The inhibitors oligomycin and dicyclohexylcarbodiimide did not change the pattern of accessible surface residues in the proteolipid, suggesting that neither inhibitor induces gross conformational changes. However, in the presence of oligomycin, the extent oflabeling in some residues was reduced. Apparently, these residues provide part of the binding site for the inhibitor. After reaction with dicyclohexylcarbodiimide an additional labeled amino acid was found at position 65 corresponding to the invariant carbod{\"u}mide-binding glutamic acid. These results and previous observations indicate that the carboxyl side chain of Glu-65 is located at the protein-lipid interphase. The idea is discussed that proton translocation occurs at the interphase between different types if F\(_0\) subunits. Dicyclohexylcarbodiimide or oligomycin might disturb this essential interaction between the F\(_0\) subunits.}, subject = {Biochemie}, language = {en} } @article{HoppeSebald1986, author = {Hoppe, J. and Sebald, Walter}, title = {Topological studies suggest that the pathway of the protons through F\(_0\) is provided by amino acid residues accessible from the lipid phase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62602}, year = {1986}, abstract = {The structure of the F0 part of ATP synthases from E. coli and Neurospora crassa was analyzed by hydrophobic surface labeling with [125I]TID. In the E. co/i F0 all three subunits were freely accessible to the reagent, suggesting that these subunits are independently integrated in the membrane. Labeted amino acid residues were identified by Edman degradation of the dicyclohexylcarbodiimide binding (DCCD) proteins from E. coli and Neurospora crassa. The very similar patterns obtained with the two homologaus proteins suggested the existence of tightly packed cx-helices. The oligomeric structure of the DCCD binding protein appeared to be very rigid since little, if any, change in the labeling patternwas observed upon addition of oligomycin or DCCD to membranes from Neurospora crassa. When membrancs were pretrcated with DCCD prior to the reaction with [125I]TID an additionally labeled amino acid appeared at the position of Glu·65 which binds DCCD covalently, indicating the Jocation of this inhibitor on the outside of the oligomer. It is suggested that proton conduction occurs at the surface of the oligomer of the DCCD binding protein. Possibly this oligomer rotates against the subunit a or b and thus enables proton translocation. Conserved residues in subunit a, probably located in the Iipid bilayer, might participate in the pro· ton translocation mechanism.}, subject = {Biochemie}, language = {en} }