@inproceedings{TrendelenburgSpringScheeretal.1974, author = {Trendelenburg, Michael F. and Spring, Herbert and Scheer, Ulrich and Franke, Werner W.}, title = {Morphology of nucleolar cistrons in a plant cell, Acetabularia mediterranea}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32213}, year = {1974}, abstract = {The structural organization of transcriptionally active DNA that contains cistrons for precursor molecules of ribosomal RNA is described in positively stained spread preparations from nuclei and nucleoli isolated from the green alga, Acetabularia mediterranea Lmx. These nuclei contain large aggregates of nucleolar subunits in which fibril-covered regions, the putative active cistrons for precursors of ribosomal RNA, alternate with fibril-free intercepts, the "spacers". The length distribution of the different intercepts of this DNA is given, and the pattern is compared with those shown in animal cell systems. The data are discussed in relation to problems of transcription and of amplification of ribosomal RNA genes.}, language = {en} } @article{FrankeBergerFalketal.1974, author = {Franke, Werner W. and Berger, S. and Falk, Heinz and Spring, H. and Scheer, Ulrich and Trendelenburg, Michael F. and Schweiger, H. G. and Herth, W.}, title = {Morphology of the nucleo-cytoplasmic interactions during the development of Acetabularia cells. I. The vegetative phase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32363}, year = {1974}, abstract = {The ultrastructure of th e growin g and ma turing primary nucleus of Acetabularia medite rranea and Acetabularia major has been studied with the use of various fi xation procedures. Particular interest has been focused on the deta ils of the nuclear periphery and the perinuclear region. It is demonstrated that early in nuclear grow th a characteristic perinucl ear structura l complex is formed which is, among the eukaryotic cells, unique to Acetabularia and re lated genera. This perinuclear system consists essentially of a) the nuclear envelope with a very hi gh pore frequency and various pore complex assoc iat ion s w ith granular and/or threadlike structures some of which are continuous with the nucleolus; b) an approx imate ly 100 nm thick intermediate zone densely filled with a filam entOus material and occasional sma ll membraneous structures from which the typical cytOplasmic and nuclear organe lles and particles are excl ud ed ; c) an adjacent Iacunar labyrinthum which is interrupted by many plasmatic junction channels between the intermed iate zone and the free cytOplasm; d) numerous dense perinuclear bodies in the juxtanuclear cytOplasm which a re especia lly frequent at the junction channels and reveal a composition of aggregated fibrillar and granul ar structures; e) very dense exclusively fibrill ar agg regates which occur either in assoc iation with t he perinuclear region of the lacunar labyrinthum or, somewhat further out, in the cytOplasmic strands between the bra nches of the lacun ar labyrinthum in the form of slender, characteristic rods or "sausages".}, language = {en} } @article{FrankeScheer1978, author = {Franke, Werner W. and Scheer, Ulrich}, title = {Morphology of transcriptional units at different states of activity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-41363}, year = {1978}, abstract = {The morphology of two forms of transcription ally active chromatin, the nucleoli and the loops of lampbrush chromosomes, has been examined after fixation in situ or after isolation and dispersion of the material in media of low ionic strengths, using a variety of electron microscopic preparation techniques (e.g. spread preparations with positive or negative staining or without any staining at all, with bright and dark field illumination, with autoradiography, after pretreatment of the chromatin with specific detergents such as Sarkosyl NL-30; transmission and scanning transmission electron microscopy of ultrathin sections). Nucleolar chromatin and chromosomes from oocytes of various amphibia and insects as well as from green algae of the family of the Dasycladaceae were studied in particular detail. The morphology of transcriptional units that are densely packed with lateral ribonucleoprotein fibrils, indicative of great transcriptional activity, was compared with that of chromatin of reduced lateral fibril density, including stages of drug-induced inhibition. The micrographs showed that under conditions which preserve the nucleosomal organization in condensed chromatin studied in parallel, nucleosomes are not recognized in transcriptionally active chromatin. This holds for the transcribed regions as well as for apparently untranscribed (i.e. fibril-free) regions interspersed between ('spacer') and/or adjacent to transcribed genes and for the fibril-free regions within transcriptional units of reduced fibril density. In addition, comparison oflengths of repeating units of isolated rDNA with those observed in spread nucleolar chromatin indicated that this DNA is not foreshortened and packed into nucleosomal structures. Granular particles which were observed, at irregular frequencies and in variable patterns, in some spacer regions, did not result in a proportional shortening of the spacer axis, and were found to be resistant to detergent treatment effective in removing most of the chromatin associated proteins including histones. Thus, these particles behave like RNA polymerases rather than nucleosomes. It is suggested that structural changes from nucleosomal packing to an extended form of DNA are involved in the transcriptional activation of chromatin.}, language = {en} } @article{FrankeScheerSpringetal.1976, author = {Franke, Werner W. and Scheer, Ulrich and Spring, Herbert and Trendelenburg, Michael F. and Krohne, G.}, title = {Morphology of transcriptional units of rDNA: evidence for transcription in apparent spacer intercepts and cleavages in the elongating nascent RNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39681}, year = {1976}, abstract = {Several types of "irregular" structures in the arrangement of lateral fibrils were noted in electron microscopic preparations of transcriptionally active nucleolar chromatin from various plant and animal cells. Such forms include: I. Disproportionately long lateral fibrils which occur either as individual fibrils or in groups; 2. "Prelude complexes" and other arrangements of lateral fibrils in apparent spacer intercepts; 3. Thickening of the rDNA chromatin axis at the starting end of pre-rRNA matrix units; 4. Extremely long matrix units , the length of which exceeds that of the rDNA (double-strand) sequence complementary to the specific pre-rRN A (for abbreviations see text). In addition, the stability of high molecular weight RNAs contained in the nucleolar ribonucleoproteins during the preparation for electron microscopy was demonstrated by gel electrophoresis. The observations indicate that the morphological starting point of a pre-rRNA matrix unit is not necessarily identical with the initiation site for synthesis of pre-rRNA, but they rather suggest that the start of the transcriptional unit is located at least O.2-D.8 JLm before the matrix unit and that parts of the "apparent spacer" are transcribed. It is proposed that the pre-rRN A molecules do not represent the primary product of rDNA transcription but rather relatively stable intermediate products that have already been processed during transcription.}, language = {en} } @inproceedings{FrankeScheerTrendelenburgetal.1978, author = {Franke, Werner W. and Scheer, Ulrich and Trendelenburg, Michael F. and Zentgraf, H. and Spring, H.}, title = {Morphology of transcriptionally active chromatin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-41097}, year = {1978}, abstract = {Some decades ago it was noted by cytologists that within the interphase nucleus large portions of the transcriptionally ("genetically," in their terms) inactive chromosomal material are contained in aggregates of condensed chromatin, the "chromocenters," whereas transcriptionally active regions of chromosomes appear in a more dispersed form and are less intensely stained with DNA-directed staining procedures (Heitz 1929, 1932, 1956; Bauer 1933). The hypothesis that condensed chromatin is usually characterized by very low or no transcriptional activity, and that transcription occurs in loosely packed forms of chromatin (including, in most cells, the nucleolar chromatin) has received support from studies of ultrathin sections in the electron microscope and from the numerous attempts to separate transcriptionally active from inactive chromatin biochemically (for references, see Anderson et al. 1975; Berkowitz and Doty 1975; Krieg and Wells 1976; Rickwood and Birnie 1976; Gottesfeld 1977). Electron microscopic autoradiography has revealed that sites of RNA synthesis are enriched in dispersed chromatin regions located at the margins of condensed chromatin (Fakan and Bernhard 1971, 1973; Bouteille et al. 1974; Bachellerie et al. 1975) and are characterized by the occurrence of distinct granular and fibrillar ribonucleoprotein (RNP) structures, such as perichromatin granules and fibrils. The discovery that, in most eukaryotic nuclei, major parts of the chromatin are organized in the form of nucleosomes (Olins and Olins 1974; Kornberg 1974; Baldwin et al. 1975) has raised the question whether the same nucleosomal packing of DNA is also present in transcriptionally active chromatin strands. Recent detailed examination of the morphology of active and inactive chromatin involving a diversity of electron microscopic methods, particularly the spreading technique by Miller and coworkers (Miller and Beatty 1969; Miller and Bakken 1972), has indicated that the DNA of some actively transcribed regions is not packed into nucleosomal particles but is present in a rather extended form within a relatively thin (4-7 nm) chromatin fiber.}, language = {en} } @article{FrankeTrendelenburgScheer1973, author = {Franke, Werner W. and Trendelenburg, Michael F. and Scheer, Ulrich}, title = {Natural segregation of nucleolar components in the course of plant cell differentiation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32182}, year = {1973}, abstract = {Segregation of the nucleolar components is described in the differentiated nucleus of the generative cell in the growing Clivia and Lilium pollen tubes. This finding of a natural nucleolar segregation is discussed against the background of current views of the correlations of nucleolar morphology and transcriptional activity.}, language = {en} } @article{ScheerFranke1969, author = {Scheer, Ulrich and Franke, Werner W.}, title = {Negative staining and adenosine triphosphatase activity of annulate lamellae of newt oocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32087}, year = {1969}, abstract = {Semi -iso la ted annul a te lamellae were prepared from single newt oocy tes (Triturus alpestris) by a modified Call a n-T omlin technique. Such preparations were examined with the electron mi croscope, and the negative sta ining a ppearance of th e a nnulate lamellae is described . The annul a te lamellae can be de tected either adhering to the nuclear envelope or being detached from it. Sometimes they a re obse rved to be connected with slender tubular-like structures interpreted as pa rts of the endoplasmic reti culum. The results obta ined from negativ e sta ining a re combined with those from sections. Especially, the structural data on th e a nnula te lamellae and the nuclear envelope of the very same cell were compa red . Evidence is presented th a t in the oocytes studied the two kinds of porous cisternae, n amely a nnul a te lamellae and nuclear envelope, a re markedly distinguished in that the annul a te lamellae ex hibit a much higher pore frequency (generally about twice tha t found for the corresponding nuclear envelope) and have al so a rela tive pore area occupying as much as 32 \% to 55 \% of th e cistern al surface (compa red with 13 \% to 22 \% in the nuclear envelopes). T he pore di ame ter a nd all other ultras tructural details of the pore complexes, however, a re equi valent in both kinds of porous cisternae. Like the annuli of the nuclear pore complexes of various a nimal and pl ant cells, the a nnuli of the a nnula te lamellae pores reveal al so an eightfold symmetry of their subunits in negatively stained as well as in ectioned ma teria l. Furthermore, th e a nnul a te lamellae a re shown to be a site of activity of the Mg-Na-Kstimul a ted ATPase.}, language = {en} } @inproceedings{DabauvalleWilkenEwaldetal.1994, author = {Dabauvalle, M.-C. and Wilken, N. and Ewald, A. and Kuhbier, A. and Sen{\´e}cal, J.-L. and Scheer, Ulrich}, title = {Nuclear pore complex structure analyzed by immunogold EM with human autoantibodies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39439}, year = {1994}, abstract = {No abstract available}, language = {en} } @article{Scheer1973, author = {Scheer, Ulrich}, title = {Nuclear pore flow rate of ribosomal RNA and chain growth rate of its precursor during oogenesis of Xenopus laevis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32178}, year = {1973}, abstract = {The number of ribosomal RNA molecules which are transferred through an average nuclear pore complex per minute into the cytoplasm (nuclear pore flow rate, NPFR) during oocyte growth of Xenopus laevis is estimated. The NPFR calculations are based on determinations of the increase of cytoplasmic rRNA content during defined time intervals and of the total number of pore complexes in the respective oogenesis stages. In the mid-la mpbrush stage (500:"700 I'm oocyte diameter) the NPFR is maximal with 2.62 rRNA molecules/ pore/ minute. Then it decreases to zero at the end of oogenesis. The nucleocytoplasmic RNA f10w rates determined are compared with corresponding values of other cell types. The molecular weight of the rRNA precursor transcribed in the extrachromosomal nucleoli of Xenopus lampbrush stage oocytes is determined by acrylamide gel electrophoresis to be 2.5 x 10· daltons. From the temporal increase of cytoplasmic rRNA (3.8 I'g per oocyte in 38 days) and the known number of simultaneously growing precursor molecules in the nucleus the chain growth rate of the 40 S precursor RNA is estimated to be 34 nucleotides per second.}, language = {en} } @article{BenaventeScheerChaly1989, author = {Benavente, Ricardo and Scheer, Ulrich and Chaly, Nathalie}, title = {Nucleocytoplasmic sorting of macromolecules following mitosis: fate of nuclear constituents after inhibition of pore complex function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40777}, year = {1989}, abstract = {PtK2 cells in which pore complex-mediated transport is blocked by microinjection early in mitosis of a monoclonal antibody (specific for an Mr 68000 pore complex glycoprotein) or of wheat germ agglutinin (WGA) complete cytokinesis. However, their nuclei remain stably arrested in a telophase-like organization characterized by highly condensed chromatin and the absence of nucleoli, indicating a requirement for pore-mediated transport for the reassembly of interphase nuclei. We have now examined this requirement more closely by monitoring the behavior of individual nuclear macromolecules in microinjected cells using immunofluorescence microscopy and have investigated the effect of microinjecting the antibody or WGA on cellular ultrastructure. The absence of nuclear transport did not affect the sequestration into daughter nuclei of components such as DNA, DNA topoisomerase I and the nucleolar protein fibrillarin that are carried through mitosis on chromosomes. On the other hand, lamins, snRNAs and the p68 pore complex glycoprotein, all cytoplasmic during mitosis, remained largely cytoplasmic in the telophase-arrested cells. Electron microscopy showed the nuclei to be surrounded by a doublelayered membrane with some inserted pore complexes. In addition, however, a variety of membranous structures with associated pore complexes was regularly noted in the cytoplasm, suggesting that chromatin may not be essential for the postmitotic formation of pore complexes. We propose that cellular compartmentalization at telophase is a two-step process. First, a nuclear envelope tightly encloses the condensed chromosomes, excluding non-selectively all macromolecules not associated with the chromosomes. Interphase nuclear organization is then progressively restored by selective pore complex-mediated uptake of nuclear proteins from the cytoplasm.}, subject = {Cytologie}, language = {en} } @article{EckertFrankeScheer1975, author = {Eckert, W. A. and Franke, Werner W. and Scheer, Ulrich}, title = {Nucleocytoplasmic translocation of RNA in Tetrahymena pyriformis and its inhibition by actinomycin D and cycloheximide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32399}, year = {1975}, abstract = {No abstract available}, language = {en} } @article{BenaventeReimerRoseetal.1988, author = {Benavente, Ricardo and Reimer, Georg and Rose, Kathleen M. and H{\"u}gle-D{\"o}rr, Barbara and Scheer, Ulrich}, title = {Nucleolar changes after microinjection of antibodies to RNA polymerase I into the nucleus of mammalian cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40666}, year = {1988}, abstract = {After microinjection of antibodies against RNA polymerase I into the nuclei of cultured rat kangaroo (PtKz) and rat (RVF-SMC) cells alterations in nucleolar structure and composition were observed. These were detected by electron microscopy and double-label immunofluorescence microscopy using antibodies to proteins representative of the three major components of the nucleolus. The microinjected antibodies produced a progressive loss of the material of the dense fibrillar component (DFC) from the nucleoli which, at 4 h after injection, were transformed into bodies with purely granular component (GC) structure with attached fibrillar centers (FCs). Concomitantly, numerous extranucleolar aggregates appeared in the nucleoplasm which morphologically resembled fragments of the DFC and contained a protein (fibrillarin) diagnostic for this nucleolar structure. These observations indicate that the topological distribution of the material constituting the DFC can be experimentally influenced in interphase cells, apparently by modulating the transcriptional activity of the rRNA genes. These effects are different from nucleolar lesions induced by inhibitory drugs such as actinomycin D-dependent "nucleolar segregation". The structural alterations induced by antibodies to RNA polymerase I resemble, however, the initial events of nucleolar disintegration during mitotic prophase.}, language = {en} } @article{ScheerZentgraf1978, author = {Scheer, Ulrich and Zentgraf, Hanswalter}, title = {Nucleosomal and supranucleosomal organization of transcriptionally inactive rDNA circles in Dytiscus oocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33188}, year = {1978}, abstract = {Oocytes of the water beetle, Dytiscus marginalis, contain large amounts of rDNA most of which is present in the form of rings containing one or several pre-rRNA genes. Electron microscopy of spread preparations of vitellogenic oocytes has shown that the rDNA is extended in chromatin rings with transcribed pre- rRNA genes and is not packed into nucleosomes (Trendelenburg eta!. , 1976). When similar preparations are made from previtellogenic ooytes in which a large proportion of the nuc1eolar chromatin is transcriptionally inactive, a different morphological form of this chromatin is recognized. In contrast to the transcribed chromatin rings the inactive nucleolar chromatin circles show the characteristic beaded configuration, indicative of nucleosomal packing. Nuc1eosomal packing is also indicated by the comparison of the lengths of these chromatin rings with both iso lated rDNA circ1es and transcribed chromatin rings. In addition, these inactive nuc1eofilaments often appear to be compacted into globular higher order structures of diameters from 21 to 34nm, each composed of an aggregate of 6-9 nuc1eosomes. While the estimated reduction of the overall length of rDNA, as seen in our preparations, is, on the average, only 2.2 - 2.4 fold in the nuc1eosomal state it is 10- 13 fold when supranuc1eosomal globules are present. These data show that the extrachromosomal rDNA of these oocytes goes through a cycle of condensation and extensio n, as a function of the specific transcriptional activity, and that the beaded state described here is exc1usively found in the non-transcribed state.}, language = {en} } @article{WilkenKossnerSenecaletal.1993, author = {Wilken, Norbert and Kossner, Ursula and Sen{\´e}cal, Jean-Luc and Scheer, Ulrich and Dabauvalle, Marie-Christine}, title = {Nup180, a novel nuclear pore complex protein localizing to the cytoplasmic ring and associated fibrils}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32049}, year = {1993}, abstract = {No abstract available}, language = {en} } @incollection{FrankeScheerSpringetal.1979, author = {Franke, Werner W. and Scheer, Ulrich and Spring, Herbert and Trendelenburg, Michael F. and Zentgraf, Hanswalter}, title = {Organization of nucleolar chromatin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39410}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1979}, abstract = {No abstract available}, language = {en} } @incollection{FrankeScheerZentgrafetal.1980, author = {Franke, Werner W. and Scheer, Ulrich and Zentgraf, Hanswalter and Trendelenburg, Michael F. and M{\"u}ller, U. and Krohne, G. and Spring, H.}, title = {Organization of transcribed and nontranscribed chromatin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40656}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1980}, abstract = {No abstract available}, subject = {Tumor / Zellteilung}, language = {en} } @article{FrankeScheerZentgraf1984, author = {Franke, Werner W. and Scheer, Ulrich and Zentgraf, Hanswalter}, title = {Organization of transcriptionally active and inactive chromatin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40588}, year = {1984}, abstract = {No abstract available}, subject = {Deutschland}, language = {en} } @incollection{ScheerSpringTrendelenburg1979, author = {Scheer, Ulrich and Spring, Herbert and Trendelenburg, Michael F.}, title = {Organization of transcriptionally active chromatin in lampbrush chromosome loops}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39293}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1979}, abstract = {No abstract available}, language = {en} } @inproceedings{FrankeScheer1974, author = {Franke, Werner W. and Scheer, Ulrich}, title = {Pathways of nucleocytoplasmic translocation of ribonucleoproteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33832}, year = {1974}, abstract = {No abstract available}, language = {en} } @article{ScheerTrendelenburgFranke1976, author = {Scheer, Ulrich and Trendelenburg, Michael F. and Franke, Werner W.}, title = {Regulation of transcription of genes of ribosomal RNA during amphibian oogenesis: a biochemical and morphological study}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32814}, year = {1976}, abstract = {Natural changes in the transcription of rRNA genes were studied in nucleoli from three oogenic stages of the newt Triturus alpestris with electron microscope, autoradiographic, and biochemical techniques. From determinations of the uridine triphosphate pool sizes and [3H]uridine uptake, phosphorylation, and incorporation into 28S and 18S rRNAs in vivo it was estimated that the rate of rRNA synthesis was about 0.01\% in previtellogenic oocytes and 13\% in mature oocytes when compared to midvitellogenesis. Spread preparations of nucleoli showed significant morphological changes in the transcriptional complexes. The total number of lateral fibrils, i.e., ribonucleoproteins containing the nascent rRNA precursor, were drastically decreased in stages of reduced synthetic activity. This indicates that rRNA synthesis is regulated primarily at the level of transcription. The resulting patterns of fibril coverage of the nucleolar chromatin axes revealed a marked heterogeneity. On the same nucleolar axis occurred matrix units that were completely devoid of lateral fibrils, matrix units that were almost fully covered with lateral fibrils, and various forms of matrix units with a range of lateral fibril densities intermediate between the two extremes. Granular particles that were tentatively identified as RNA polymerase molecules were not restricted to the transcription l complexes. They were observed, although less regularly and separated by greater distances, in untranscribed spacer regions as well as in untranscribed gene intercepts. The results show that the pattern of transcriptional control of rRNA genes differs widely in different genes, even in the same genetic unit.}, language = {en} }