@article{PeindlGoettlichCrouchetal.2022, author = {Peindl, Matthias and G{\"o}ttlich, Claudia and Crouch, Samantha and Hoff, Niklas and L{\"u}ttgens, Tamara and Schmitt, Franziska and Pereira, Jes{\´u}s Guillermo Nieves and May, Celina and Schliermann, Anna and Kronenthaler, Corinna and Cheufou, Danjouma and Reu-Hofer, Simone and Rosenwald, Andreas and Weigl, Elena and Walles, Thorsten and Sch{\"u}ler, Julia and Dandekar, Thomas and Nietzer, Sarah and Dandekar, Gudrun}, title = {EMT, stemness, and drug resistance in biological context: a 3D tumor tissue/in silico platform for analysis of combinatorial treatment in NSCLC with aggressive KRAS-biomarker signatures}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {9}, issn = {2072-6694}, doi = {10.3390/cancers14092176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270744}, year = {2022}, abstract = {Epithelial-to-mesenchymal transition (EMT) is discussed to be centrally involved in invasion, stemness, and drug resistance. Experimental models to evaluate this process in its biological complexity are limited. To shed light on EMT impact and test drug response more reliably, we use a lung tumor test system based on a decellularized intestinal matrix showing more in vivo-like proliferation levels and enhanced expression of clinical markers and carcinogenesis-related genes. In our models, we found evidence for a correlation of EMT with drug resistance in primary and secondary resistant cells harboring KRAS\(^{G12C}\) or EGFR mutations, which was simulated in silico based on an optimized signaling network topology. Notably, drug resistance did not correlate with EMT status in KRAS-mutated patient-derived xenograft (PDX) cell lines, and drug efficacy was not affected by EMT induction via TGF-β. To investigate further determinants of drug response, we tested several drugs in combination with a KRAS\(^{G12C}\) inhibitor in KRAS\(^{G12C}\) mutant HCC44 models, which, besides EMT, display mutations in P53, LKB1, KEAP1, and high c-MYC expression. We identified an aurora-kinase A (AURKA) inhibitor as the most promising candidate. In our network, AURKA is a centrally linked hub to EMT, proliferation, apoptosis, LKB1, and c-MYC. This exemplifies our systemic analysis approach for clinical translation of biomarker signatures.}, language = {en} } @article{AlzheimerSvenssonKoenigetal.2020, author = {Alzheimer, Mona and Svensson, Sarah L. and K{\"o}nig, Fabian and Schweinlin, Matthias and Metzger, Marco and Walles, Heike and Sharma, Cynthia M.}, title = {A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni}, series = {PLoS Pathogens}, volume = {16}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1008304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229454}, year = {2020}, abstract = {The Gram-negative Epsilonproteobacterium Campylobacter jejuni is currently the most prevalent bacterial foodborne pathogen. Like for many other human pathogens, infection studies with C. jejuni mainly employ artificial animal or cell culture models that can be limited in their ability to reflect the in-vivo environment within the human host. Here, we report the development and application of a human three-dimensional (3D) infection model based on tissue engineering to study host-pathogen interactions. Our intestinal 3D tissue model is built on a decellularized extracellular matrix scaffold, which is reseeded with human Caco-2 cells. Dynamic culture conditions enable the formation of a polarized mucosal epithelial barrier reminiscent of the 3D microarchitecture of the human small intestine. Infection with C. jejuni demonstrates that the 3D tissue model can reveal isolate-dependent colonization and barrier disruption phenotypes accompanied by perturbed localization of cell-cell junctions. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D model deviated from those obtained with 2D-monolayers, but recapitulated phenotypes previously observed in animal models. Moreover, we demonstrate the involvement of a small regulatory RNA pair, CJnc180/190, during infections and observe different phenotypes of CJnc180/190 mutant strains in 2D vs. 3D infection models. Hereby, the CJnc190 sRNA exerts its pathogenic influence, at least in part, via repression of PtmG, which is involved in flagellin modification. Our results suggest that the Caco-2 cell-based 3D tissue model is a valuable and biologically relevant tool between in-vitro and in-vivo infection models to study virulence of C. jejuni and other gastrointestinal pathogens.}, language = {en} }