@phdthesis{Stepanenko2008, author = {Stepanenko, Vladimir}, title = {Self-Assembly of Bay-Substituted Perylene Bisimide by Ligand-Metal Ion Coordination}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32063}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The subject of this thesis is the synthesis and characterization of PBI-based fluorescent metallosupramolecular polymers and cyclic arrays. Terpyridine receptor functionalized PBIs of predesigned geometry have been used as building blocks to construct desired macromolecular structures through metal-ion-directed self-assembly. These metallosupramolecular architectures have been investigated by NMR, UV/Vis and fluorescence spectroscopy, mass spectrometry, and atomic force microscopy.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Rehm2008, author = {Rehm, Thomas Helge}, title = {A Guide to Supramolecular Assemblies in Polar Solutions - From Nanometre-Sized Cyclic Dimers to Large Vesicular Structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28359}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {This PhD thesis introduced several concepts for the construction of new supramolecular assem-blies in polar solvents. Although the building blocks differ in their binding mode and association strength they follow the same principle: one main driving force for the self-assembly in polar solutions in combination with one texturing force. The main self-assembly process is based on the mutual interaction of hydrogen-bond enforced ion pairs which deliver the association energy needed for stable, supramolecular structures even in polar solvents. The texturing force itself is represented by the linkers between the zwitterionic building blocks or parts of them. The different length and functionalization of the linkers have a tremendous influence on the mode of self-assembly leading to cyclic dimers, vesicles, layers or solid spheres. Hence, this principle is suitable for the construction of programmable monomers. Since the derivatisation of the main binding motive is rather simple it offers a great number of new and undoubtedly fascinating structures with potential applications in material and biomimetic science.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Lohr2008, author = {Lohr, Andreas}, title = {Self-Assembly of Merocyanines : Thermodynamic and Kinetic Insights into the Formation of Well-Defined Dye Aggregates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28964}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The present thesis demonstrates the potential of dipolar aggregation of merocyanine dyes as novel directional and specific supramolecular binding motif for the creation of more elaborate supramolecular architectures beyond simple dimers. Furthermore, the self-assembly studies into bis(merocyanine) nanorods gave new insights into the kinetics of morphogenesis in supramolecular aggregates.}, subject = {Supramolekulare Chemie}, language = {en} }