@phdthesis{Gebert2017, author = {Gebert, Steffen Christian}, title = {Architectures for Softwarized Networks and Their Performance Evaluation}, issn = {1432-8801}, doi = {10.25972/OPUS-15063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150634}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This thesis contributes to several issues in the context of SDN and NFV, with an emphasis on performance and management. The main contributions are guide lines for operators migrating to software-based networks, as well as an analytical model for the packet processing in a Linux system using the Kernel NAPI.}, subject = {Telekommunikationsnetz}, language = {en} } @phdthesis{Schwartz2016, author = {Schwartz, Christian}, title = {Modeling and Evaluation of Multi-Stakeholder Scenarios in Communication Networks}, issn = {1432-8801}, doi = {10.25972/OPUS-13388}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133887}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Today's Internet is no longer only controlled by a single stakeholder, e.g. a standard body or a telecommunications company. Rather, the interests of a multitude of stakeholders, e.g. application developers, hardware vendors, cloud operators, and network operators, collide during the development and operation of applications in the Internet. Each of these stakeholders considers different KPIs to be important and attempts to optimise scenarios in its favour. This results in different, often opposing views and can cause problems for the complete network ecosystem. One example of such a scenario are Signalling Storms in the mobile Internet, with one of the largest occurring in Japan in 2012 due to the release and high popularity of a free instant messaging application. The network traffic generated by the application caused a high number of connections to the Internet being established and terminated. This resulted in a similarly high number of signalling messages in the mobile network, causing overload and a loss of service for 2.5 million users over 4 hours. While the network operator suffers the largest impact of this signalling overload, it does not control the application. Thus, the network operator can not change the application traffic characteristics to generate less network signalling traffic. The stakeholders who could prevent, or at least reduce, such behaviour, i.e. application developers or hardware vendors, have no direct benefit from modifying their products in such a way. This results in a clash of interests which negatively impacts the network performance for all participants. The goal of this monograph is to provide an overview over the complex structures of stakeholder relationships in today's Internet applications in mobile networks. To this end, we study different scenarios where such interests clash and suggest methods where tradeoffs can be optimised for all participants. If such an optimisation is not possible or attempts at it might lead to adverse effects, we discuss the reasons.}, subject = {Leistungsbewertung}, language = {en} } @phdthesis{Lange2019, author = {Lange, Stanislav}, title = {Optimization of Controller Placement and Information Flow in Softwarized Networks}, issn = {1432-8801}, doi = {10.25972/OPUS-17457}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174570}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The Software Defined Networking (SDN) paradigm offers network operators numerous improvements in terms of flexibility, scalability, as well as cost efficiency and vendor independence. However, in order to maximize the benefit from these features, several new challenges in areas such as management and orchestration need to be addressed. This dissertation makes contributions towards three key topics from these areas. Firstly, we design, implement, and evaluate two multi-objective heuristics for the SDN controller placement problem. Secondly, we develop and apply mechanisms for automated decision making based on the Pareto frontiers that are returned by the multi-objective optimizers. Finally, we investigate and quantify the performance benefits for the SDN control plane that can be achieved by integrating information from external entities such as Network Management Systems (NMSs) into the control loop. Our evaluation results demonstrate the impact of optimizing various parameters of softwarized networks at different levels and are used to derive guidelines for an efficient operation.}, subject = {Leistungsbewertung}, language = {en} } @phdthesis{Metter2019, author = {Metter, Christopher Valentin}, title = {Resilience, Availabilty, and Serviceability Evaluation in Software-defined Networks}, issn = {1432-8801}, doi = {10.25972/OPUS-17678}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176788}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {With the introduction of Software-defined Networking (SDN) in the late 2000s, not only a new research field has been created, but a paradigm shift was initiated in the broad field of networking. The programmable network control by SDN is a big step, but also a stumbling block for many of the established network operators and vendors. As with any new technology the question about the maturity and the productionreadiness of it arises. Therefore, this thesis picks specific features of SDN and analyzes its performance, reliability, and availability in scenarios that can be expected in production deployments. The first SDN topic is the performance impact of application traffic in the data plane on the control plane. Second, reliability and availability concerns of SDN deployments are exemplary analyzed by evaluating the detection performance of a common SDN controller. Thirdly, the performance of P4, a technology that enhances SDN, or better its impact of certain control operations on the processing performance is evaluated.}, subject = {Leistungsbewertung}, language = {en} }