@article{FernandezRodriguezQuilesBlancoetal.2012, author = {Fern{\´a}ndez-Rodr{\´i}guez, Juana and Quiles, Francisco and Blanco, Ignacio and Teul{\´e}, Alex and Feliubadal{\´o}, L{\´i}dia and del Valle, Jes{\´u}s and Salinas, M{\´o}nica and Izquierdo, {\´A}ngel and Darder, Esther and Schindler, Detlev and Capell{\´a}, Gabriel and Brunet, Joan and L{\´a}zaro, Conxi and Angel Pujana, Miguel}, title = {Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families}, series = {BMC Cancer}, volume = {12}, journal = {BMC Cancer}, number = {84}, doi = {10.1186/1471-2407-12-84}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131772}, year = {2012}, abstract = {Background: Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of SLX4 in German or Byelorussian familial cases of breast cancer without detected mutations in BRCA1 or BRCA2 has been completed, with globally negative results. Methods: The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of BRCA1 or BRCA2 mutations. Results: This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes) in a set of controls (138 women and 146 men) did not detect seven of them. Conclusions: Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4 contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease.}, language = {en} } @article{JanzZinkCirnuetal.2021, author = {Janz, Anna and Zink, Miriam and Cirnu, Alexandra and Hartleb, Annika and Albrecht, Christina and Rost, Simone and Klopocki, Eva and G{\"u}nther, Katharina and Edenhofer, Frank and Erg{\"u}n, S{\"u}leyman and Gerull, Brenda}, title = {CRISPR/Cas9-edited PKP2 knock-out (JMUi001-A-2) and DSG2 knock-out (JMUi001-A-3) iPSC lines as an isogenic human model system for arrhythmogenic cardiomyopathy (ACM)}, series = {Stem Cell Research}, volume = {53}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2021.102256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259846}, pages = {102256}, year = {2021}, abstract = {Arrhythmogenic cardiomyopathy (ACM) is characterized by fibro-fatty replacement of the myocardium, heart failure and life-threatening ventricular arrhythmias. Causal mutations were identified in genes encoding for proteins of the desmosomes, predominantly plakophilin-2 (PKP2) and desmoglein-2 (DSG2). We generated gene-edited knock-out iPSC lines for PKP2 (JMUi001-A-2) and DSG2 (JMUi001-A-3) using the CRISPR/Cas9 system in a healthy control iPSC background (JMUi001A). Stem cell-like morphology, robust expression of pluripotency markers, embryoid body formation and normal karyotypes confirmed the generation of high quality iPSCs to provide a novel isogenic human in vitro model system mimicking ACM when differentiated into cardiomyocytes.}, language = {en} } @article{RickmanLachAbhyankaretal.2015, author = {Rickman, Kimberly A. and Lach, Francis P. and Abhyankar, Avinash and Donovan, Frank X. and Sanborn, Erica M. and Kennedy, Jennifer A. and Sougnez, Carrie and Gabriel, Stacey B. and Elemento, Olivier and Chandrasekharappa, Settara C. and Schindler, Detlev and Auerbach, Arleen D. and Smogorzewska, Agata}, title = {Deficiency of UBE2T, the E2 Ubiquitin Ligase Necessary for FANCD2 and FANCI Ubiquitination, Causes FA-T Subtype of Fanconi Anemia}, series = {Cell Reports}, volume = {12}, journal = {Cell Reports}, doi = {10.1016/j.celrep.2015.06.014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151525}, pages = {35 -- 41}, year = {2015}, abstract = {Fanconi anemia (FA) is a rare bone marrow failure and cancer predisposition syndrome resulting from pathogenic mutations in genes encoding proteins participating in the repair of DNA interstrand crosslinks (ICLs). Mutations in 17 genes (FANCA-FANCS) have been identified in FA patients, defining 17 complementation groups. Here, we describe an individual presenting with typical FA features who is deficient for the ubiquitin-conjugating enzyme (E2), UBE2T. UBE2T is known to interact with FANCL, the E3 ubiquitin-ligase component of the multiprotein FA core complex, and is necessary for the monoubiquitination of FANCD2 and FANCI. Proband fibroblasts do not display FANCD2 and FANCI monoubiquitination, do not form FANCD2 foci following treatment with mitomycin C, and are hypersensitive to crosslinking agents. These cellular defects are complemented by expression of wild-type UBE2T, demonstrating that deficiency of the protein UBE2T can lead to Fanconi anemia. UBE2T gene gains an alias of FANCT.}, language = {en} } @article{AtakLanglhoferSchaeferetal.2015, author = {Atak, Sinem and Langlhofer, Georg and Schaefer, Natascha and Kessler, Denise and Meiselbach, Heike and Delto, Carolyn and Schindelin, Hermann and Villmann, Carmen}, title = {Disturbances of ligand potency and enhanced degradation of the human glycine receptor at affected positions G160 and T162 originally identified in patients suffering from hyperekplexia}, series = {Frontiers in Molecular Neuroscience}, volume = {8}, journal = {Frontiers in Molecular Neuroscience}, number = {79}, doi = {10.3389/fnmol.2015.00079}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144818}, year = {2015}, abstract = {Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GIyR) undergoes direct interaction with the incoming ligand via a cation-π interaction. Recently, we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GIyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GIyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER toward the ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is delivered to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, 1162 affects primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof.}, language = {en} } @phdthesis{Gross2002, author = {Groß, Michaela}, title = {Genomic changes in Fanconi anemia: implications for diagnosis, pathogenesis and prognosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6579}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Fanconi anemia (FA) is a genetically and phenotypically heterogenous autoso- mal recessive disease associated with chromosomal instability, progressive bone marrow failure, typical birth defects and predisposition to neoplasia. The clinical phenotype is similar in all known complementation groups (FA-A, FA-B, FA-C,FA-D1, FA-D2, FA-E, FA-F and FA-G). The cellular phenotype is characterized by hypersensitivity to DNA crosslinking agents (MMC,DEB), which is exploited as a diagnostic tool. Alltogether, the FA proteins constitute a multiprotein pathway whose precise biochemical function(s) remain unknown. FANCA, FANCC, FANCE, FANCF and FANCG interact in a nuclear complex upstream of FANCD2. Complementation group FA-D1 was recently shown to be due to biallelic mutations in the human breast cancer gene 2 (BRCA2). After DNA damage, the nuclear complex regulates monoubiquitylation of FANCD2, result- ing in targeting of this protein into nuclear foci together with BRCA1 and other DNA damage response proteins. The close connection resp. identity of the FA genes and known players of the DSB repair pathways (BRCA1, BRCA2, Rad51) firmly establishs an important role of the FA gene family in the maintenance of genome integrity. The chapter 1 provides a general introduction to the thesis describing the current knowledge and unsolved problems of Fanconi anemia. The following chapters represent papers submitted or published in scientific literature. They are succeeded by a short general discussion (chapter 7). Mutation analysis in the Fanconi anemia genes revealed gene specific mutation spectra as well as different distributions throughout the genes. These results are described in chapter 1 and chapter 2 with main attention to the first genes identified, namely FANCC, FANCA and FANCG. In chapter 2 we provide general background on mutation analysis and we report all mutations published for FANCA, FANCC and FANCG as well as our own unpublished mutations until the year 2000. In chapter 3 we report a shift of the mutation spectrum previously reported for FANCC after examining ten FA-patients belonging to complementation group C. Seven of those patients carried at least one previously unknown mutation, whereas the other three patients carried five alleles with the Dutch founder mu- tation 65delG and one allele with the Ashkenazi founder mutation IVS4+4A>T, albeit without any known Ashkenazi ancestry. We also describe the first large deletion in FANCC. The newly detected alterations include two missense mu- tations (L423P and T529P) in the 3´-area of the FANCC gene. Since the only previously described missense mutation L554P is also located in this area, a case can be made for the existence of functional domain(s) in that region of the gene. In chapter 4 we report the spectrum of mutations found in the FANCG gene com- piled by several laboratories working on FA. As with other FA genes, most muta- tions have been found only once, however, the truncating mutation, E105X, was identified as a German founder mutation after haplotype analysis. Direct compar- ison of the murine and the human protein sequences revealed two leucine zipper motifs. In one of these the only identified missense mutation was located at a conserved residue, suggesting the leucine zipper providing an essential protein-protein interaction required for FANCG function. With regard to genotype-phenotype correlations, two patients carrying a homozygous E105X mutation were seen to have an early onset of the hematological disorder, whereas the missense mutation seems to lead to a disease with later onset and milder clinical course. In chapter 5 we explore the phenomenon of revertant mosaicism which emerges quite frequently in peripheral blood cells of patients suffering from FA. We de- scribe the types of reversion found in five mosaic FA-patients belonging to com- plementation groups FA-A and FA-C. For our single FA-C-patient intragenic crossover could be proven as the mechanism of self-correction. In the remaining four patients (all of them being compound heterozygous in FANCA), either the paternal or maternal allele has reverted back to WT sequence. We also describe a first example of in vitro phenotypic reversion via the emergence of a compensat- ing missense mutation 15 amino acids downstream of the constitutional mutation explaining the MMC-resistance of the lymphoblastoid cell line of this patient. In chapter 6 we report two FA-A mosaic patients where it could be shown that the spontaneous reversion had taken place in a single hematopoietic stem cell. This has been done by separating blood cells from both patients and searching for the reverted mutation in their granulocytes, monocytes, T- and B-lymphocytes as well as in skin fibroblasts. In both patients, all hematopoietic lineages, but not the fibroblasts, carried the reversion, and comparison to their increase in erythrocyte and platelet counts over time demonstrated that reversion must have taken place in a single hematopoietic stem cell. This corrected stem cell then has been able to undergo self-renewal and also to create a corrected progeny, which over time repopulated all hematopoietic lineages. The pancytopenia of these patients has been cured due to the strong selective growth advantage of the corrected cells in vivo and the increased apoptosis of the mutant hematopoietic cells.}, subject = {Fanconi-An{\"a}mie}, language = {en} } @article{FrankeVilnedaCostaetal.2015, author = {Franke, Katharina and Vilne, Baiba and da Costa, Olivia Prazeres and Rudelius, Martina and Peschel, Christian and Oostendorp, Robert A. J. and Keller, Ulrich}, title = {In vivo hematopoietic Myc activation directs a transcriptional signature in endothelial cells within the bone marrow microenvironment}, series = {Oncotarget}, volume = {6}, journal = {Oncotarget}, number = {26}, doi = {10.18632/oncotarget.5217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145844}, pages = {21827 -- 21839}, year = {2015}, abstract = {Cancer pathogenesis involves tumor-intrinsic genomic aberrations and tumor-cell extrinsic mechanisms such as failure of immunosurveillance and structural and functional changes in the microenvironment. Using Myc as a model oncogene we established a conditional mouse bone marrow transduction/transplantation model where the conditional activation of the oncoprotein Myc expressed in the hematopoietic system could be assessed for influencing the host microenvironment. Constitutive ectopic expression of Myc resulted in rapid onset of a lethal myeloproliferative disorder with a median survival of 21 days. In contrast, brief 4-day Myc activation by means of the estrogen receptor (ER) agonist tamoxifen did not result in gross changes in the percentage/frequency of hematopoietic lineages or hematopoietic stem/progenitor cell (HSPC) subsets, nor did Myc activation significantly change the composition of the non-hematopoietic microenvironment defined by phenotyping for CD31, ALCAM, and Sca-1 expression. Transcriptome analysis of endothelial CD45-Ter119-cells from tamoxifen-treated MycER bone marrow graft recipients revealed a gene expression signature characterized by specific changes in the Rho subfamily pathway members, in the transcription-translation-machinery and in angiogenesis. In conclusion, intra-hematopoietic Myc activation results in significant transcriptome alterations that can be attributed to oncogene-induced signals from hematopoietic cells towards the microenvironment, e. g. endothelial cells, supporting the idea that even pre-leukemic HSPC highjack components of the niche which then could protect and support the cancer-initiating population.}, language = {en} } @article{LiedertRoentgenSchinkeetal.2014, author = {Liedert, Astrid and R{\"o}ntgen, Viktoria and Schinke, Thorsten and Benisch, Peggy and Ebert, Regina and Jakob, Franz and Klein-Hitpass, Ludger and Lennerz, Jochen K. and Amling, Michael and Ignatius, Anita}, title = {Osteoblast-Specific Krm2 Overexpression and Lrp5 Deficiency Have Different Effects on Fracture Healing in Mice}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {7}, issn = {1932-6203}, doi = {10.1371/journal.pone.0103250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115782}, pages = {e103250}, year = {2014}, abstract = {The canonical Wnt/beta-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1), are the low-density lipoprotein receptor related protein 5 (Lrp5) and Kremen 2 (Krm2). Lrp 5 deficiency (Lrp5(-/-)) as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2) result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5(-/-) mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5(-/-) mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3) and less active beta-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis.}, language = {en} } @article{TuChenLimetal.2012, author = {Tu, Xiaolin and Chen, Jianquan and Lim, Joohyun and Karner, Courtney M. and Lee, Seung-Yon and Heisig, Julia and Wiese, Cornelia and Surendran, Kameswaran and Kopan, Raphael and Gessler, Manfred and Long, Fanxin}, title = {Physiological Notch Signaling Maintains Bone Homeostasis via RBPjk and Hey Upstream of NFATc1}, series = {PLoS Genetics}, volume = {8}, journal = {PLoS Genetics}, number = {3}, doi = {10.1371/journal.pgen.1002577}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133490}, pages = {e1002577}, year = {2012}, abstract = {Notch signaling between neighboring cells controls many cell fate decisions in metazoans both during embryogenesis and in postnatal life. Previously, we uncovered a critical role for physiological Notch signaling in suppressing osteoblast differentiation in vivo. However, the contribution of individual Notch receptors and the downstream signaling mechanism have not been elucidated. Here we report that removal of Notch2, but not Notch1, from the embryonic limb mesenchyme markedly increased trabecular bone mass in adolescent mice. Deletion of the transcription factor RBPjk, a mediator of all canonical Notch signaling, in the mesenchymal progenitors but not the more mature osteoblast-lineage cells, caused a dramatic high-bone-mass phenotype characterized by increased osteoblast numbers, diminished bone marrow mesenchymal progenitor pool, and rapid age-dependent bone loss. Moreover, mice deficient in Hey1 and HeyL, two target genes of Notch-RBPjk signaling, exhibited high bone mass. Interestingly, Hey1 bound to and suppressed the NFATc1 promoter, and RBPjk deletion increased NFATc1 expression in bone. Finally, pharmacological inhibition of NFAT alleviated the high-bone-mass phenotype caused by RBPjk deletion. Thus, Notch-RBPjk signaling functions in part through Hey1-mediated inhibition of NFATc1 to suppress osteoblastogenesis, contributing to bone homeostasis in vivo.}, language = {en} } @article{ZahnleiterUebeEkicietal.2013, author = {Zahnleiter, Diana and Uebe, Steffen and Ekici, Arif B. and Hoyer, Juliane and Wiesener, Antje and Wieczorek, Dagmar and Kunstmann, Erdmute and Reis, Andr{\´e} and Doerr, Helmuth-Guenther and Rauch, Anita and Thiel, Christian T.}, title = {Rare Copy Number Variants Are a Common Cause of Short Stature}, series = {PLoS Genetics}, volume = {9}, journal = {PLoS Genetics}, number = {3}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003365}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127645}, pages = {e1003365}, year = {2013}, abstract = {Human growth has an estimated heritability of about 80\%-90\%. Nevertheless, the underlying cause of shortness of stature remains unknown in the majority of individuals. Genome-wide association studies (GWAS) showed that both common single nucleotide polymorphisms and copy number variants (CNVs) contribute to height variation under a polygenic model, although explaining only a small fraction of overall genetic variability in the general population. Under the hypothesis that severe forms of growth retardation might also be caused by major gene effects, we searched for rare CNVs in 200 families, 92 sporadic and 108 familial, with idiopathic short stature compared to 820 control individuals. Although similar in number, patients had overall significantly larger CNVs \((p-value <1 x 10^{-7})\). In a gene-based analysis of all non-polymorphic CNVs >50 kb for gene function, tissue expression, and murine knock-out phenotypes, we identified 10 duplications and 10 deletions ranging in size from 109 kb to 14 Mb, of which 7 were de novo (p < 0.03) and 13 inherited from the likewise affected parent but absent in controls. Patients with these likely disease causing 20 CNVs were smaller than the remaining group (p < 0.01). Eleven (55\%) of these CNVs either overlapped with known microaberration syndromes associated with short stature or contained GWAS loci for height. Haploinsufficiency (HI) score and further expression profiling suggested dosage sensitivity of major growth-related genes at these loci. Overall 10\% of patients carried a disease-causing CNV indicating that, like in neurodevelopmental disorders, rare CNVs are a frequent cause of severe growth retardation.}, language = {en} } @article{GewiesGorkaBergmannetal.2014, author = {Gewies, Andreas and Gorka, Oliver and Bergmann, Hanna and Pechloff, Konstanze and Petermann, Franziska and Jeltsch, Katharina M. and Rudelius, Martina and Kriegsmann, Mark and Weichert, Wilko and Horsch, Marion and Beckers, Johannes and Wurst, Wolfgang and Heikenwalder, Mathias and Korn, Thomas and Heissmeyer, Vigo and Ruland, Juergen}, title = {Uncoupling Malt1 Threshold Function from Paracaspase Activity Results in Destructive Autoimmune Inflammation}, series = {Cell Reports}, volume = {9}, journal = {Cell Reports}, number = {4}, doi = {10.1016/j.celrep.2014.10.044}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114627}, pages = {1292-1305}, year = {2014}, abstract = {The paracaspase Malt1 is a central regulator of antigen receptor signaling that is frequently mutated in human lymphoma. As a scaffold, it assembles protein complexes for NF-kappa B activation, and its proteolytic domain cleaves negative NF-kappa B regulators for signal enforcement. Still, the physiological functions of Malt1-protease are unknown. We demonstrate that targeted Malt1-paracaspase inactivation induces a lethal inflammatory syndrome with lymphocyte-dependent neurodegeneration in vivo. Paracaspase activity is essential for regulatory T cell (Treg) and innate-like B cell development, but it is largely dispensable for overcoming Malt1-dependent thresholds for lymphocyte activation. In addition to NF-kappa B inhibitors, Malt1 cleaves an entire set of mRNA stability regulators, including Roquin-1, Roquin-2, and Regnase-1, and paracaspase inactivation results in excessive interferon gamma (IFN gamma) production by effector lymphocytes that drive pathology. Together, our results reveal distinct threshold and modulatory functions of Malt1 that differentially control lymphocyte differentiation and activation pathways and demonstrate that selective paracaspase blockage skews systemic immunity toward destructive autoinflammation.}, language = {en} }