@article{MuehlbergUmstaetterDomhanetal.2020, author = {M{\"u}hlberg, Eric and Umst{\"a}tter, Florian and Domhan, Cornelius and Hertlein, Tobias and Ohlsen, Knut and Krause, Andreas and Kleist, Christian and Beijer, Barbro and Zimmermann, Stefan and Haberkorn, Uwe and Mier, Walter and Uhl, Philipp}, title = {Vancomycin-lipopeptide conjugates with high antimicrobial activity on vancomycin-resistant enterococci}, series = {Pharmaceuticals}, volume = {13}, journal = {Pharmaceuticals}, number = {6}, issn = {1424-8247}, doi = {10.3390/ph13060110}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205879}, year = {2020}, abstract = {Multidrug-resistant bacteria represent one of the most important health care problems worldwide. While there are numerous drugs available for standard therapy, there are only a few compounds capable of serving as a last resort for severe infections. Therefore, approaches to control multidrug-resistant bacteria must be implemented. Here, a strategy of reactivating the established glycopeptide antibiotic vancomycin by structural modification with polycationic peptides and subsequent fatty acid conjugation to overcome the resistance of multidrug-resistant bacteria was followed. This study especially focuses on the structure-activity relationship, depending on the modification site and fatty acid chain length. The synthesized conjugates showed high antimicrobial potential on vancomycin-resistant enterococci. We were able to demonstrate that the antimicrobial activity of the vancomycin-lipopeptide conjugates depends on the chain length of the attached fatty acid. All conjugates showed good cytocompatibility in vitro and in vivo. Radiolabeling enabled the in vivo determination of pharmacokinetics in Wistar rats by molecular imaging and biodistribution studies. An improved biodistribution profile in comparison to unmodified vancomycin was observed. While vancomycin is rapidly excreted by the kidneys, the most potent conjugate shows a hepatobiliary excretion profile. In conclusion, these results demonstrate the potential of the structural modification of already established antibiotics to provide highly active compounds for tackling multidrug-resistant bacteria.}, language = {en} } @article{HaringWylervonBallmoosAppeletal.2014, author = {Haring, Bernhard and Wyler von Ballmoos, Moritz C. and Appel, Lawrence J. and Sacks, Frank M.}, title = {Healthy Dietary Interventions and Lipoprotein (a) Plasma Levels: Results from the Omni Heart Trial}, doi = {10.1371/journal.pone.0114859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111005}, year = {2014}, abstract = {Background: Increased lipoprotein(a) [Lp(a)] levels are associated with atherosclerotic cardiovascular disease. Studies of dietary interventions on changes in Lp(a) are sparse. We aimed to compare the effects of three healthy dietary interventions differing in macronutrient content on Lp(a) concentration. Methods: Secondary analysis of a randomized, 3-period crossover feeding study including 155 (89 blacks; 66 whites) individuals. Participants were given DASHtype healthy diets rich in carbohydrates [Carb], in protein [Prot] or in unsaturated fat [Unsat Fat] for 6 weeks each. Plasma Lp(a) concentration was assessed at baseline and after each diet. Results: Compared to baseline, all interventional diets increased mean Lp(a) by 2 to 5 mg/dl. Unsat Fat increased Lp(a) less than Prot with a difference of 1.0 mg/dl (95\% CI, -0.5, 2.5; p=0.196) in whites and 3.7 mg/dl (95\% CI, 2.4, 5.0; p<0.001) in blacks (p-value between races=0.008); Unsat Fat increased Lp(a) less than Carb with a difference of 20.6 mg/dl, 95\% CI, -2.1, 0.9; p=0.441) in whites and 21.5 mg/dl (95\% CI, -0.2, -2.8; p=0.021) in blacks (p-value between races=0.354). Prot increased Lp(a) more than Carb with a difference of 0.4 mg/dl (95\% CI, -1.1, 1.9; p=0.597) in whites and 2.2 mg/dl (95\%CI, 0.9, 3.5; p=0.001) in blacks (p-value between races=0.082). Conclusion: Diets high in unsaturated fat increased Lp(a) levels less than diets rich in carbohydrate or protein with greater changes in blacks than whites. Our results suggest that substitutions with dietary mono- and polyunsaturated fatty acids in healthy diets may be preferable over protein or carbohydrates with regards to Lp(a).}, language = {en} } @article{UteReisbergHildebrandtetal.2013, author = {Ute, Hentschel and Reisberg, Eva E. and Hildebrandt, Ulrich and Riederer, Markus}, title = {Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0078613}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96699}, year = {2013}, abstract = {The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of four Arabidopsis thaliana eceriferum mutants (cer1, cer6, cer9, cer16) and their respective wild type (Landsberg erecta) were subjected to an outdoor growth period and analysed towards this purpose. The chemical distinctness of the mutant wax phenotypes was confirmed by gas chromatographic measurements. Next generation amplicon pyrosequencing of the bacterial communities showed distinct community patterns. This observation was supported by denaturing gradient gel electrophoresis experiments. Microbial community analyses revealed bacterial phylotypes that were ubiquitously present on all plant lines (termed "core" community) while others were positively or negatively affected by the wax mutant phenotype (termed "plant line-specific" community). We conclude from this study that plant cuticular wax composition can affect the community composition of phyllosphere bacteria.}, language = {en} } @article{WaltherKrmarLeistneretal.2023, author = {Walther, Rasmus and Krmar, Jovana and Leistner, Adrian and Svrkota, Bojana and Otašević, Biljana and Malenović, Andjelija and Holzgrabe, Ulrike and Protić, Ana}, title = {Analytical Quality by Design: achieving robustness of an LC-CAD method for the analysis of non-volatile fatty acids}, series = {Pharmaceuticals}, volume = {16}, journal = {Pharmaceuticals}, number = {4}, issn = {1424-8247}, doi = {10.3390/ph16040478}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311265}, year = {2023}, abstract = {An alternative to the time-consuming and error-prone pharmacopoeial gas chromatography method for the analysis of fatty acids (FAs) is urgently needed. The objective was therefore to propose a robust liquid chromatography method with charged aerosol detection for the analysis of polysorbate 80 (PS80) and magnesium stearate. FAs with different numbers of carbon atoms in the chain necessitated the use of a gradient method with a Hypersil Gold C\(_{18}\) column and acetonitrile as organic modifier. The risk-based Analytical Quality by Design approach was applied to define the Method Operable Design Region (MODR). Formic acid concentration, initial and final percentages of acetonitrile, gradient elution time, column temperature, and mobile phase flow rate were identified as critical method parameters (CMPs). The initial and final percentages of acetonitrile were fixed while the remaining CMPs were fine-tuned using response surface methodology. Critical method attributes included the baseline separation of adjacent peaks (α-linolenic and myristic acid, and oleic and petroselinic acid) and the retention factor of the last compound eluted, stearic acid. The MODR was calculated by Monte Carlo simulations with a probability equal or greater than 90\%. Finally, the column temperature was set at 33 °C, the flow rate was 0.575 mL/min, and acetonitrile linearly increased from 70 to 80\% (v/v) within 14.2 min.}, language = {en} }